{ "cells": [ { "cell_type": "code", "execution_count": 6, "id": "3606cf6b-ad79-451b-bb78-c4254186b2dc", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
forcerpm
012960
112960
212960
312000
412960
.........
239103520
240100480
241103840
242102880
243102880
\n", "

244 rows × 2 columns

\n", "
" ], "text/plain": [ " force rpm\n", "0 1296 0\n", "1 1296 0\n", "2 1296 0\n", "3 1200 0\n", "4 1296 0\n", ".. ... ...\n", "239 10352 0\n", "240 10048 0\n", "241 10384 0\n", "242 10288 0\n", "243 10288 0\n", "\n", "[244 rows x 2 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "\n", "df=pd.read_csv('machinedata.csv')\n", "df" ] }, { "cell_type": "code", "execution_count": 7, "id": "b6e0155d-f755-42c7-aef8-dc6cb1ddf24a", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "mode": "markers", "type": "scatter", "x": [ 1296, 1296, 1296, 1200, 1296, 1264, 1296, 848, 1232, 1296, 1280, 1296, 1328, 944, 1344, 1328, 1360, 1296, 1296, 864, 1344, 1184, 896, 19840, 23536, 24656, 21216, 22144, 22016, 22352, 21760, 1296, 5824, 7376, 7456, 7680, 11920, 11136, 11680, 10400, 10208, 1296, 8272, 1280, 1360, 1232, 1344, 1312, 1216, 1088, 1344, 1296, 880, 1360, 912, 1280, 1200, 1344, 1264, 1312, 1440, 1296, 864, 1264, 1376, 1312, 1296, 1264, 912, 1232, 880, 1296, 912, 1376, 1328, 1328, 848, 1264, 1168, 928, 1296, 816, 848, 1200, 1312, 1216, 1280, 864, 1280, 1152, 1328, 1216, 1328, 1216, 944, 1424, 1280, 848, 1312, 1296, 1136, 800, 816, 43216, 20352, 20960, 23040, 20960, 21568, 20256, 24416, 10464, 2112, 8832, 3664, 5264, 4656, 1392, 1280, 8800, 13136, 16640, 16336, 15808, 20544, 15712, 14224, 13712, 19808, 21920, 22080, 21904, 21264, 20976, 20912, 20864, 19424, 20400, 23584, 22400, 19488, 23232, 22720, 21984, 20176, 20512, 20496, 22112, 23488, 22560, 19008, 21312, 21168, 24048, 24512, 23888, 27776, 24992, 24848, 24656, 24256, 24048, 24640, 27840, 25056, 25888, 26128, 27360, 28304, 29552, 38400, 29424, 30656, 28816, 28000, 28064, 25424, 26256, 26416, 25552, 27696, 27232, 28560, 29424, 31728, 12880, 14464, 14256, 18384, 18320, 1616, 1856, 7744, 6736, 4384, 5248, 9392, 6688, 7536, 6064, 5488, 8832, 8336, 9904, 9184, 9904, 5424, 1280, 9888, 9344, 7040, 9408, 8464, 9680, 6848, 7088, 8896, 8464, 8240, 8960, 7664, 5424, 8064, 5424, 5056, 9200, 8768, 8576, 9824, 10064, 9568, 10080, 10224, 10256, 10304, 10304, 10368, 10384, 10368, 10352, 10048, 10384, 10288, 10288 ], "y": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 195, 352, 540, 720, 862, 975, 1065, 1132, 1162, 1185, 1215, 1230, 1252, 1260, 1267, 1260, 1267, 1290, 1320, 1350, 1350, 1245, 1162, 1102, 1035, 1012, 975, 960, 945, 930, 922, 907, 915, 900, 480, 510, 585, 652, 705, 735, 750, 787, 802, 810, 825, 817, 382, 1020, 1207, 1260, 1290, 1290, 1275, 1267, 1320, 1387, 1395, 1410, 1417, 1432, 1417, 1387, 1320, 1260, 1260, 1275, 1275, 1260, 1230, 1230, 1215, 1237, 1245, 1252, 1245, 1252, 1222, 1215, 1222, 1200, 1192, 1200, 1207, 1215, 1192, 1185, 1185, 1185, 1185, 1200, 1185, 1185, 1185, 1185, 1162, 1170, 1155, 1147, 1140, 1110, 1102, 1095, 1080, 1095, 1095, 1080, 1080, 1087, 1095, 1080, 1035, 1065, 1050, 1065, 1050, 1020, 1005, 997, 975, 975, 975, 982, 975, 960, 989, 1005, 989, 1005, 892, 780, 750, 720, 735, 960, 1072, 1110, 1125, 1132, 1132, 1125, 1125, 1155, 1170, 1177, 1170, 1185, 1177, 1170, 1162, 1170, 1162, 1170, 1170, 1155, 1170, 1170, 1170, 1170, 1170, 1170, 1170, 1140, 1147, 1162, 1155, 1155, 930, 240, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] } ], "layout": { "autosize": true, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "autorange": true, "range": [ -1644.0055489496635, 45660.005548949666 ], "title": { "text": "Force" }, "type": "linear" }, "yaxis": { "autorange": true, "range": [ -118.1747572815534, 1550.1747572815534 ], "title": { "text": "RPM" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAACWsAAAFoCAYAAAArETuTAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAJa6ADAAQAAAABAAABaAAAAAAflsvdAABAAElEQVR4AezdB5wb93nn/wfA7rKTy15EiSIpUiLF3iSRKlTvsmzZ8smOy1mO47PjRIqduzh3OedyuST/xMnFvotzcUmsuHdbXbIKRTU2sXdKlChKFHtvSy6A//MdcHYBLHYX2F1ggd3P7yVqAUz7zXsGwGDmmeeJJL0ZDQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoKgC0aLOnZkjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggEAgRrsSMggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiUQIFirBMgsAgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAgWIt9AAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAogQDBWiVAZhEIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAMFa7AMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQAkECNYqATKLQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQI1mIfQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKIECwVgmQWQQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQLAW+wACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUAIBgrVKgMwiEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAGCtdgHEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIESCBCsVQJkFoEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIEKzFPoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlECAYK0SILMIBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIBgLfYBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAEAgRrlQCZRSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGuxDyCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACJRAgWKsEyCwCAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECBYi30AAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECiBAMFaJUBmEQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAwVrsAwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBACQQI1ioBMotAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAjWYh9AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEogQLBWCZBZBAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAsBb7AAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQAgGCtUqAzCIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAYK12AcQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRIIEKxVAmQWgQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQrMU+gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUQIBgrRIgswgEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgGAt9gEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoAQCBGuVAJlFIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIEa7EPIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIlECBYqwTILAIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIFiLfQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKIEAwVolQGYRCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggADBWuwDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAJBAjWKgEyi0AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECNZiH0AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESiBAsFYJkFkEAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIECwFvsAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFACAYK1SoDMIhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABgrXYBxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBEggQrFUCZBaBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBCsxT6AAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRAgGCtEiCzCAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAYC32AQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgBAIEa5UAmUUggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgRrsQ8ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiUQIFirBMgsAgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAgWIt9AAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAogQDBWiVAZhEIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAMFa7AMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQAkECNYqATKLQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQI1mIfQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKIECwVgmQWQQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQLAW+wACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUAIBgrVKgMwiEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAGCtdgHEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIESCBCsVQJkFoEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIEKzFPoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlECAYK0SILMIBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIBgLfYBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAEAgRrlQCZRSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGuxDyCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACJRAgWKsEyCwCAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECBYi30AAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECiBAMFaJUBmEQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAwVrsAwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBACQQI1ioBMotAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAjWYh9AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEogQLBWCZBZBAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAsBb7AAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQAgGCtUqAzCIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAYK12AcQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRIIEKxVAmQWgQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQrMU+gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUQIBgrRIgswgEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgGAt9gEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoAQCBGuVAJlFIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIEa7EPIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIlECBYqwTILAIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIFiLfQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKIEAwVolQGYRCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggADBWuwDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAJBAjWKgEyi0AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECNZiH0AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESiBAsFYJkFkEAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIECwFvsAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFACAYK1SoDMIhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABgrXYBxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBEggQrFUCZBaBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBCsxT6AAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRAgGCtEiCzCAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAYC32AQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgBAIEa5UAmUUggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgRrsQ8ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiUQIFirBMgsAgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCo6moEZ+vrrbqq8NWKxxO2e99BGzlskEWjTWPYjp88ZSdP1tmwIbUZZLsOnMp4zpPWBYYM6GE1VVHbf6TOztQnWp+AMRBAoNMFetXErGePmB06dqbT+0IHEEAgP4E+PausKhaxIyfO5jcBYyGAQKcL9O1VZdFIxI6e5H3b6RuDDiCQp0D/3tWWSCbt+Kn6PKdgNAQQ6GyB2r41duZs3E7WxTu7KywfAQTyFBjUryZ4z54+w/s2TzJGQ6DTBXQd6Kifk+IaUKdvCjqAQN4Cw2p72kG/BlTv18xpCCBQGQIjBva0vR5zkUgkO6XDowb36pTldpWFFh7VVMZr/tzLK+2PvvINW/3MtzN6+T/+/iH76SPPZ7w2ddI4+/E///fgtV88vtj+19e+b2fPnLWammr7yhc/aXfdND8YVuev/elff8ueWrTcIv7KmNHD7Z/++sHgb8YMeYIAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIItCDQJYK1Dh46avd97n/aO+/ty5lVK2lJmz/nUvuT3/9oA0XPnjXB430HDtuff/W79t8f/Li9/9ar7CcPP29/9rffsasum2oDB/SzXz622Jau3GSPPPRXnlVroD34lf9rf/m179m3/u5LDfPiAQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQmkDTen+tTVGGw2tr+9l3/uE/21/+l/ub7V3fPr1t/IWjGv6dN2JIMO5zL6+y2v597EN3LrSqqpjd9/7rrVfPHrboldXB8KcXr7CbF861sReMtD69e9on7r3ZlqzYYMdPUP6wWWwGIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQBOBLpFZKxqJ2OiRQ237jvearGD4wpqNb9gX/8c3rHZAX7vhqtl2xexLg0F79h2080cNC0czzev8UUNt996DDcMXzp/RMPyC84ZbIpk0ZeTq26eXRaMqjkgrRCAUi7gdfoXIMS4CnScQ8c9G/4/3bOdtApaMQMECvG8LJmMCBDpdgPdtp28COoBAwQI6RvYjZY6TC5ZjAgQ6TyB43/r/OCfVeduAJSNQqEBwTor3baFsjI9ApwroOpCut/F926mbgYUjULAA79uCyZgAgU4X0PvWukSKpk6nLHkHukSwVmtqUy4ZG2TF6llTYxu2vmWf/uLf2V//6Wfsrpvm25FjJ6xHj1RJxHA+NTXVduxc5qxjx09az7ThPXweakf9dbVhA3oEf/lf/gLhwfmgvtXmcW80BBCoAAFdPPZrUP6Zx7d9BWwuuohAIBC8b/1Rz+oYIgggUCEC4fu2Vw3v2wrZZHQTAb+hQZehzPr04H3L7oBApQjofatj5H69usVp0UrZLPQTgRYFdNNvtVfF6J/kfdsiFAMRKCMBXQeq7VdtxjWgMtoqdAWBlgX0vh3Un/dty0oMRaC8BPS+HTLA41f4vi2vDZNnb7rFr5sP3n5NBseDX/kn+/WTLwbBWgP69bEzZ89mDK+rO2v9+/YOXuvnf+vONA6vO3MmeD0cvvvQ6YxpedK6wBAPcKupitqBo2fsTH2i9QkYAwEEOl1AF417+gWoQ8dSn4Gd3iE6gAACrQr06VllVbGIHTnReBzT6kSMgAACnSrQ1y8a606ooyd533bqhmDhCBQg0L93dZB9+/ip+gKmYlQEEOhMgdq+NX4uMG4n6+Kd2Q2WjQACBQgM6lcTvGdPn+F9WwAboyLQqQK6DnTUz0lxDahTNwMLR6AggWG1Pe2gXwOqj3PttiA4RkagEwVGDOxpe4/UWSLROdFaowb36sS1r/xFd8sUKSOGDrRTp+qCrTdsyEB7+929DVtSJQ537tprw4bUBq8NHzrIdryzu2H4jnf2BBdQhg5ODW8YwAMEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoAWBLhOsdeZsvZ2tT93Jqsf19Y132fzN//2hbXnj7WD46vWv28NPv2JXzLk0YLluwSw7fOS4/eyRRRb3SOEf/epZO113xhbOnxkMv/Hq2fbU88vtrZ277aQHeD30s6fs8tmTrW8fogRb2K8YhAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkCXaIM4t79h+3aDz7QsGozb/y0zZ1+sX33a18OXluxZot97+dPB48jXlbk1mvn2Wd+587guTJo/dkDH7O/+vr37S/+4SGrrq6yP//iJ21Qbb9g+D23XW3LVm2yOz7+ZYv4K6NHDbN//psHg2H8DwEEEKgUgSNHItanT9KqusSnfqWo008EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQyBSJJb5kvdc1nR4+dsAOHjprKGvbu1aPJSioT1649+23U8CEezBBrMvzY8ZN2/MQpGzl8cMawXQdOZTznSesCqlVeUxW1/V4/lXrlrXsxBgLtEdizN2JPPxO119+IWC9PCDh7ZsJuuC5hHrdaUOtVE7OePWJ2yOuV0xBAoDIE+vSssqpYxI6cOFsZHaaXCCBgfXtVBSXXj57kfcvugEClCPTvXW0JP61y/FQq03el9Jt+ItCdBWr71tiZs3E7WdeYlb87e7DuCFSCwKB+NcF79vQZ3reVsL3oIwIS0HWgo35OimtA7A8IVI7AsNqedtCvAdV7JSoaAghUhsCIgT1tr8dcJBKdE/IzajDV6Nqzp3SbHCv9+/Ux/WuuKUDrgvOGNzfY+vXtHfxrdgQGIFCgwNs7I7Z1W8QmX5K0UaM65wO0wC4zegUKPPt81La9norMOnnS7MWXozZ2bNIuGlfcfe7QoYitWhOxUSOTNnFC0qJdpuhuBe4EdBkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoGwEuk2wVtmI0xEEXOCHP4nZ5i2pAJrFL5nNmJa0D9zNnWHlunOcPm22em3U1m2IBEFOs2clPPizXHvb2K/jxy0ICGx8JfVo5aqor0fx9reXX40G2bzCvI2DB5l9/rP1lGDM3hA8RwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDodgLkOul2m5wV7myBvV6WLgzUCvuyZl3EDh8psC5dODF/iy7w45/F7PEno7bTs6E9/0LU/uXbVVYJWWB79zbPCNiUZ8Tw4mXVinsM2CtLohYGamnpBw6abdjE103TLcEr5SCwf38kY38thz7RBwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ6LoCXD3vutuWNSsjAZWEU9lDtTd3NA3KUmDLjrebvl6KVdCyt78ZMWVhojUVUCCHfNLbsWNmmzdnvpY+vFweq/TgvLmZtcWrq81mzcx8rSP7e+BgxOST3d56q/y9svvM864tsN4z5f2fb8Ts6/5Pf9d60CwNAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKLYAZRCLLcz8u7XAmTNmP/15zLa9kcrcMnxY0m65KWGxmJkyEIWtR43ZJROLF0ATLif777bXI/bo4zE7dNiCPk251Msxvi9uEWIWGqiOn2h4mPHg2HEhFS9DVcbC2vHkqgUJG3th0lasjNrQIUmbOT1hyrhVrDZsaNJGjEja7t2ZO9G0qaXfv4u1jsy38gXOnjV7+LGYqcSp2v4DEXvEPwsvubjeavzzmIYAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggUS4DMWsWSZb4IuMDa9VHb6gFRYUm4PV4CcfmKqF1/bcJ69UoR9eljduMNCevRo/RkzzwXDQK1tGQFj61Z2zSLVOl7VV5LvHBM0oZ6AFJ6q/HsVDOmVU7w0ejzknb3nXFbcEVxA7VCo5uuT9igQalnVR4SPHtmMggYC4fzF4HOFtjoZTnDQK2wL3V1Zus3clgUevAXAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSKI0BmreK4MlcEAoFcZbU2b43YB+6O22Venk6lEcdckDQFtJS67fPyfu9lZT9SHxRgNn5cWtqvUnesDJd3z90Je/HlqG3eErELzk/agvkJ69mzDDtaJl26aHzS/vDz9UFpT2XaKmYmrzJZZbpRYQLK/parjRye+/Vc4/IaAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0BaBTggRaUs3mQaB0gnU15ttfzMVlNPegJxxY5P21o7McnDKchSW2Ro/rvMCAwYPStqA/mZHjmbaqs+0TIFRI5P24Q/G7azvG9V8ambiNPNMpTSVlYyGQDkKqCStPuv0WR82Bc6O9Pc6DQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECimAGEHxdRl3hUnsGJl1FQa8ORJM5W6u/yyhN1wXdvL3R3NCoSKeYUtlaIrhxZVXzxD1JNPRy1xrktDBift0knl0b9yMMruA4Fa2SI8R6ByBT7+0XiQLW/TlqhdMjFhky4hUKtytyY9RwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKByBAjWqpxtRU+LLHD2rNlvn43aqVOpBZ3x5yp9N3tm0gYOLPwi/t59EVPwV3rr1cts4oTC55U+j458fPk8BSgkbPWaqI30smATLkqaMiLREEAAga4uoIDVyZOS/o+yr119W7N+CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJSTQGYkSTn1jL4gUGKB17dHGgK1wkUnPa5q3Ya2RS+tW990uuMnzLZsbfp6uLzO+KtSiNdclQiCyAjU6owtwDIRQKAzBBSgq7K3tMIFlI2xrq7w6ZgCAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTMyKzFXoDAOYEx5yetyt8R2Rfvx49rWyYsTffCi5m8Cob6yc9jNm5s0hZenbAxF7Rt3plz5RkCCCCAQL4Cp0+bLVoctVWeUVChszNnJILP4x498p1D9x1PAczKOLnitaid8HLBUy/177JrElY7gO+y7rtXsOYIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKFCpBZq1Axxu+yAr17m82d4+lC0prKAp43qm0XoS8ckzT9S2+60K1/b3gWr1/+OhY8Th/OYwQQQACB4gqoPO0rS1Ilb0962duXX43aytUcDuWjru+uZ56L2uEjZspMtnJ1xBa9gF0+doyDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQChAZq1Qgr8IuMCtNyVs7qykrd8YsYs8M9bo0ZnBVoUifeoTcdvxdiTIRLJ1W2b5w0OHzVR6ccL49i2j0D4xPgIIINCdBRSsld1WvBaxKy7LfpXn2QLLPaNWdlOp4FtvNiMzWbYMzxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDILUCwVm4XXu3GAkOGqERhxwVQqdRhXV3Ctm6LNVEdOKDJS7yAAAIIIFBEgYG1STt4MDN4tra2iAvsQrOWnQXFIxtXqo9npayubnzOIwQQQAABBBAob4GTXspYWUXXrIvYWM8EPW9O0vQbuJjt+HEzBcxv8JuilL167uykDRxY3GUWc32YNwIIIIAAAggggAACCCCAAAIIIIAAAu0VaJoiob1zZHoEEGgiMG5s0qJZ77aePazoJ8WbdIQXEEAAgW4uMC+r3K04LpubWQK3mxM1u/pz/WJuJDPOzebMTjT5fmt2BgxAAIGKFUj4x+S7uyJFLeGtUuG7fBnxeMUy0XEE8hJQsNT+A1lfqHlN2TEj/fxXMXv6majt2ROxJcui9s1/jdkZL29czPaDH8fsuUW+zL0Re+mVqH3nuzHT5woNAQQQQAABBBBAAAEEEEAAAQQQQACB7ipAZq3uuuVZ75IKbN4SaXIy+nSd2ZatUbt4ImepS7oxWBgCCHRrgUmXJO0z98dt+YpoEHg014O3zhtFZod8dorBg5L2B5+XXcQOHY54VoyEjfeSwTQEEOjaAiqB+sKLUTt61EyZCK9bGLcZ0zr2vb9xU8R++2zUDnjmw759zBbMT9iCKzhG7tp7Vvdbu7P1Zg8/GguyS9X747EXJu2O2xI2tMhZrdKllV30je2ZgWKnT5utWxe12bOK855ToKf+pbejx8z0G3nypI79LElfBo8rS0D7yKlTFhxbZt8cUFlrQm8RQAABBBBAAAEEEEAAAQQQQACB/AQI1srPibG6mYBOWK9aE7X3dvtJZT9/rIAqXeDPzo6VD4tOOj72RNMSiJr2hz+J2qSLI/bhD8WbZCvJZ96MgwACCCBQuMDo85I2+jxStxQuZ6aArVtu4sJqW+wqfRplO9rgATXvvBOxGdOTNmok+0Glb9N8+q8L508+FTUFmagdPmz2+JMxu3RSfYeVQFV2ncd8nsc8eEPt+AkLAremXJqwAf1Tr7X0/7Ck25kzZnM82KR/HtO0ND+GIVAsgfUbvPTg2sagpTffitjil6J2z92tH5MokPG1lZEgYHL6tIT1qGlbL+v8faIsdtlNNxIVq9U1M++6Olnk6EyxOlKm8317Z8TWro/YOA/eu+Titp1zKNNVy6tbJ/wz//s/ijUE9A0aZHbvPXGOM/LSYyQEEEAAAQQQQAABBBBAAAEEEKhkAYK1Knnr0feiCOhE+Df+JWZn00pBrF4bs6FDk/b7n209qEoXnHQn6PY3I7bCMxHs3mN2wktd5Go6Ub5xc+ru5ovGc6I6lxGvIYAAAggggEDnCihQ6+v/VOUZ1VL9WLLM7MoFCbvp+uJkYenctWXp6QLrPLgkDNQKX9dNDZs8I860KR1z7Pr6G5GGQK1wGTqeXuuZfq7y/ayltttvrFAJN2UpUlPgy0c+HLeJEzqmb6m58n8EOkZg1erGQK1wjhs2Ruyu263F4MfXVkU9I1e0IchKWej+4HP11q9fOJf8/44ckbTzRydtpwfehq3azwrNmtHyey0cd+++iC3zDJsnT6YybCo7WGtt3NikDfHsYfv3Ny6zVy8zBWQW2sLSibluotrxtvoWtZ49kqbSzSOGt963Qpff0eP/xjOtKQhPbdlys+He5899pvVzDh3dj86cn/bv9MxrBw+aveylMj/kAVs0BBBAAAEEEEAAAQQQQAABBBBAoCsLEKzVlbcu69YmAZV3Sg/UCmeyz09Mb3s90uzFH90R+srSqK30k4064X34SDhl6383bIraReM5Gdm6FGMggAACCCCAQKkFVKIuDNQKl62A9IVXJaymjdldwvnwt7wFzvdMhNlNNyWMHpX9atufK0tbzJPQKigwvSkLYmttqQdmhIFaGleBHEuWRf14PWtmrc2I4Qg0I6DfeD17WrCPNjNK3i+P9iCpt3Y0BixpwuHDki0GammcV5dEGgK19FyZqhTgsvDqwoOdNP3735ewV16NmIIxx1yQtCsuS5iCp1prCqj5l283ZoxevyFmd96eCMoitzbth+9J2MtLoqbvE5VQnn95otX1Tp/n7j0Re8Kz/CkgS59Bynx9841JG1ib+pxQVuxf/SZ6bpKILX/N7P5PxoP1S59POT3WDV3pmdbUtz2+nipT2Z1u5FLWzuymgGB9J+i7gYYAAggggAACCCCAAAIIIIAAAgh0VQGCtbrqlmW92izwzrtNTxaGM9MdyM3dqf/somiQSSsct5C/Ey9q24n2QpbBuAgggAACCCCAQFsEch0bKbvS/gORii5TpPVSmT9dFNfFf1pKQJlfdYNC794elOUBU8qco3JtYVOZrkFeErWjWt++FmTpWrWmcRkK4MonY8877zTtxbu+XbUObNOmNrySv4CyLT/zXNQ2eRbkPv5emO0lNq+9JtGu/Wru7GSQPUklO9W0jypQqqWmzyh91ma39MxY2cNaez5kcNLuuiNpd9yWsFwZqpqbXlmrstuy5cqwlf1q0+fKGPWB98Xt7jutoGVqTno//+inUTt0qNFho9/sdOZM0j7+0VRgpvqR3dTfMReUb+CmMgOmB5uG/dd3U3cK1pp4UdLeey9z+ymgj0CtcI/gLwIIIIAAAggggAACCCCAAAIIdFUBgrW66pZlvdosMGN60t7emXmyMJyZhuVqurtZpVryabrwdcbHrz933lhlKC6emHu++cyPcRBAAAEEEEAAgWIKzPTjn1eXZi5B2WAUUFOJTZlyvvfDmO06d3F44MCkffiDiYpdn47cBsqc89OfxxoyqWkb/85H4oHV1q0RmzwpvyCqQvv0fg/imDXTM/2sT2XdyffYeOaMpD35dOZx+/Rp7QuoKbTvjN81BZ57PmoqUah27LjZosVRu+D8ZLuCaJQF6ksP1NvqtdGg9OecWZ4Zyj9/WmrKeKUASWWkSm8z8yxbqGkUEKTsRWfORGz61MaMiHq/b38zYlO9pOmgVvqh+Rw6pP9ntqPHCsuAVEhwWLgk9TE9UCt8XRmoDnoAV+2ApB05kumjcbIzQobTlctfBaQOGGDe98YeKYBv+rSW94nGsbvGozmzE55hLNqQmVz7/IIrWg5i7BprzloggAACCCCAAAIIIIAAAggggEB3FyBYq7vvAax/E4FpUxJB9gBdLMpuCsrK1XTXZ5W/m8K7pHONM36c2ZzZcZt8STLI4rB2fdTOG5U0BWvREEAAAQQQQACBchUYMSJp13jJQ2UpUZYXZUi55cbiXUiN+6w3ezablaujNtKXrWw0A/xifEc1lQ8LA7U0TwUBvPRK1O69p3wzsHTUurc2HzmkBzjIaZVvh6sWJEzZT4rZVI5N/wppClh5xzPfqmSWSiAqG838ywubRyHLY9zKElBpe/3mWr8hFQQ4y/cX3TjTWjvpn3Mb/TMou722sv2l61VS8fJ5hX1+qtzhiROpEoDV1WZTL03YJA/gyqcd8Kxc3/63mKnknppKCSrYVjZ796XW8blFFrzHb7iu5X7N9aCat3Zk1qWTabEzIPXoEXS9yf8U2FRTnQwydc3yzGeLX8y8eWquB8OVc1Pg2m03x+23z0aD7Gl9+niQkpeHDEs7lnPfO7JvA/qbPfCFetu6TdkuIzbF92/t5zQEEEAAAQQQQAABBBBAAAEEEECgqwsQrNXVtzDrV7BATY2ZTjqvW595Iloz0h3NubJIKFBL0+gCV0bT+e9z54jf2G5+0jFql06KBxcJCj1JnzFfniCAAAIIIIAAAiUUuP7ahF19ZSK4oKwAqmI2BRMsW546plI5vleWWJCNJp8gi3z6FWbLSR93swf7xD1Wq9hBB+nLLLfHWv8tnj0ru+n496oF2a+Wx/NeHvhy7wfjQeaj+rORVrMUlUev6UUpBJRp6dePRE3Zl9T0V58rCgppLbtTTw8OUnnO9IxHmseQIcX97NMycjVlGrr/k3Hbtz9iffskTc/zbctWRBoCtTSNsmwpo1Z6U5nBJcuidqUHZWrdm2vKrKfAMQWt1XkpR2WxK0UGJJVjHeFBwrv3ZPZ7kt8Epe2kpnKSdV6eV1nLqvXbfGbCM4a1HHyWmjL1f33XKCBZ21wBwtOnewayEgQMaR0uuThu73lJRAXRFfs7SO+Ljgx+Tjdsz2O9J5VBruHkSXtmxrQIIIAAAggggAACCCCAAAIIIIBAhQgQrFUhG4pullZAJS508eeUn/BNbxMnNH+C/tprEjZksNmKlREbNMhP5g9K2nMvZAZv6W7Rcj1Bmr6ePEYAAQQQQAABBLIFlOmi2IFaylKqckjpTcEFyu60YH7+F97Tp89+rOM5XRhPb8rIVOyL5OnLK8fHWv/x45JNArZaOv4tl/XoFwRsNH+cXi79pB/FF9DvrecXR+3ddzPf41ryYQ/E0fBUUEjzfVHgiLJIPfNc42eR3h9zPHtTsds+z3al5Q8enDQFED3vvyff8XVRII8CZqdOKawHYbBaa1Pps3fnzohNaCGDngyuW5gIMi0quFM3OZWqfeyjcXthcczWeZa0cPvM9yxUYevjGdNuvzVhN16fyvRVyOe5fFUaN2yPPB6xo8fMFKRciqYMYbluCMte9tu+fYb4ftGWwOVNnilOpTz13afvcQXdKVCMhgACCCCAAAIIIIAAAggggAACCCDQeQIEa3WePUsuYwFdjNSdxc8tigZZFtTVi/3CnoK4mmuaRnfwzpqZGuPFlxtP7ofTqDyLSssMGBC+wl8EEEAAgeYETp/LkNDbM0hMnpywqsbraM1NwusIIFDhAidPRnKWlVaQRUc1ZU1Zuy51TKZ56sJ3KbLDdFT/izkfOezcGTOVgVMbONBsdgkCVFJL4//dVUCBMWvWRE0lVxU4qeCVtjQFEP36kZgdP9781Ic9s1A+2XsUGKXffis8i9SggUkvZ5+0/v2an29zQ/Tr8c03I7bTy3VOn5a02mZKuqpfv/pN1N58KxKs/9gLk7Z3b8SOn0jNeY8/1rpNuKjeVEox3zb10qQ9u6h10B4eeDVubPO/ddOXp0CoQoKh0qdt62MFZN5xW9z/Nc7hrR0RL8sYsWlTk8E20hAFkClzmALdlAls2NDW10kZtbKbyuUqoClcT+1Tq3wf1fwUwJq9j+54OxJsu2lTvC9+01ZHNu0Tjz4eDTKrKaO3lvG+O+NN+pC+zLq6VJaxnj1S/dW+ozLGagrY0vOLxtdTbjBFwv8RQAABBBBAAAEEEEAAAQQQQACBThEgWKtT2FloJQhc5cFaM6cnbf3GiF04JlV6oZB+z/SyiOnBXuG0P/l5zH7v0/FmT9SH4/EXge4gcNazpazfkLowNc1LlSijR/bFj+7gwDo2FVAmiB/9NNYQtNHn6ah95lNxSlw1pTIFAqt02cbNUbtkYiLIGBJeXMwxOi8hUNYCtbWpYA1daE9vCpToqNa/fzIohaZlKChpyuSk6QI4zYJj3i89WB98N/funQyy7PC9zJ5RTAEFyjz+ZDT4LtNyVGrwc5+Jt+k9qe/ClgK1dHPNDC/dl2/Tb8ALx3gEWBubvp+/+Z2Y7Xov9Xn23CKzG65LeFnRpn1YuiwV7KNFqSzhdg/wym5nz5r96uGY3Xdv/n1SsOXrfkylYKKW2sSJlZNdUD7f+W7MlGlK7fkXLAisUqZrHTsqi5SavOfNSXiAV1PvYIRz/1OQX3bTttNy1FZ64NYjHiwVjjfIg1g/93v1DZnF/vWhWBA0pnHVF21fbeeOasrwphKYaso0uXJ1xKZcGgkCG3MtQ8FdP/hx4zG0AvFUtjK9KXBLJW4VQEhDAAEEEEAAAQQQQAABBBBAAAEEEOgcAS5LdI47S60Qgb59k3b5vKQpoKTQ1reP2T13x+03j8ZMd7aG7YTfHb38tYjdeB0nRkMT/nYvAd3tvnRZ1HbsNDt9OtJwl/fqNTG/gJa0D/j7phjttL8PdbHlNS9VOmRI6uKNgsM6s+ki0OYtEdOFypMnveTOnKRfNElYdTPfzgcP+bjLU0E5F3tQzmVzk0E5lGKugy5MqdxMqS/Wv7Ik2hCopfULPzuvW5i0J56OeVac1EUrZVO49abCL+oePOj7oVtu2hK1sWMSvo4Re8MvjE68KOU6NI9MDMrmsHR51HbvVmZFz7rhF0R7eRYwNV1QVQYGfd7r+0AXn1VeSNkwdOFQpWdaMlU5otXnpu/fPzXNxX4hNbupXO83vx2zA74+amvWxoJMIJ/+j8V5H2Uvn+cIFEPglpsS/l6JBheSldHm8suSQQmwjlyW3n+VUN6vI9c533kpcG3G9I4LNMh3uYzX/QR0HPTSK42BWhLY70Ep6zdGCwqqCuWG+vFdrqb3++jzknall1ItJCtVrnkV8ppKLoaBWppO6/vKq1G74jLPFpp1rLdmXdPsTrmWpUAcHZvlG5Td1zNS3f/JuO3Zo+PHSHDcmV0GVkFsd3rWqux2yI87daykYPCLJ5w77vTjmfSm38nNHbemj9eRjxXIFgZqab5yfdWPG1XCMQzUCpenDFnXeIasVKnU8NXMvzouW7c+M33rLL/xSttI837xlZR5ONXBQ2Zr10eD474wu1c4TOMv8d85Ctjq0SN8te1/deyvrGzZTfvLReObbjONl30MnR2oFc6rufdLOJy/CCCAAAIIIIAAAggggAACCCCAAALFFcg6RVjchTF3BCpNQHdnv+wn1HWCVBfWddJ1pJfnyLddcnHSfv6rpmNv8GxdN17X9HVeQaCrC+gubt19rkCWXG3dhojddKMFwS25hrfntWf9rnQF1qjt229+MSdmX/hPccsnKKc9y21pWl1sUgaAsD38aCp4LVfGBQUr/du/x+zIuVJgCnjbssWC7DAKpmpvUxCdyvv065f6jFMQ0EteznXl6mhQImXu7ITNv7yxHExblrd3XyS4uDi4lfIwugipi1/ZTV6nT8e8JFHjsOUrIpZMxOyuO3JfsMqeh57rQtr3fqgAp9TQVYcbARU4t8ld/+gP6lu8EKpyRdoempfab5+NBFkPPvC+VD908fn5F1Lz3ePDlSksbNvfjNnv3BdvMVBE0y9afG76veblfGKmAKzscry/8TI2YaBWOH9dwNT2nDgufIW/CFSWwFAPBvjQB+L+freSBlZUlhK9RaDyBfT9ddhLxGe37f6dOWNa9qutP9cxnUr5pWelGjE8aZ/6RLxTPkvS+xH2/oQH5+/2wCkFj6W3Cy9IZXROf01BVNnHzPpcVEnEUSMzp0+fLtfj4e6gf9dek1r+Ks/OtNYDfi70couXz8sdxPb9HzVmdNIx9GY/PnrQj4903LnZfycr8Ey/kyfrd7KXjZR1KVouV92UsXpN47FW2A8dU+7wY8opXg6yuTbG7fWdo2PAI0cjpmNe/VPT8wMHms5XfZgzK/P4Lpy/Au53vuuZrzrgphCVzRwwwPuRVQpY+0uupoxgCujLbtn70vmjkzZqVO55ZE/b2nMtU5nbzvN9usb3WRoCCCCAAAIIIIAAAggggAACCCCAQH4CBGvl58RY3VBAQSUqWahSA2rrPYhk//6olzzIPyBgu58o1cnL7Ka7lI8esyAwInsYzxHoygLKNJR90Sl9fXVBZZ8H9PTt0zEXD8J5B1mK1qYCX8LX9HeZZz26/ZaOXVb6/Ft7rItC2W35a9Eg84OyQKgpGOjXXvJm7frMu/o17LBfuNnqZbwuyZFxScPzacr48JtHo/ae/9XFt0keZHrP++O2ZGnUXvRgrbD99tmoqXTYdM9kVWg7dDhiv/pNNAjA0nopo5kyD/bxjFO5mrJFXDopaavXZl5smjol2RAAlT6dbO66I/2Vlh8rcCoM1Mo15jH/fH7MSzJdOT9pyuqTq63wfScM1AqH63viFg82VNaOFSsb7cLh6X+17SdOyP19ovfBazmm1zQXnN84jS7YKqg4V9N2JVgrlwyvVZJAKTPgVJILfUWgqwgMGZy0kR50pGOQ9DbVS2O3tX3sI/EgK9+GTfqeTdrUSz1jaScFkOi4ZcmyzDUZNMjsvBxBMpd7tq0t2xpvaKjx0nW33Jiwhx/LPJ4YLLMCbh7KXHrqmYKqbr1Z/5p3VsBPWHovnMeRo6njDgU3/TTtd7Jutth/IGr/yctXlqLJ9cWXM5ekLKTKnKbjr/Tf38pulU8WRc1z6pSm/VewlAKbsrNbab9S03QvvJjZF2XxGjsm9/Fj5pitP9Ox+YIrEvbEU9GG485aD96aOjX3ttP4U7xvyiac3nQjSG1tKqOvbiibMjn39OnT5PN4tf++esZ/I+jchr6z1ddrruqYees4d6O/jy/w/U2fFTQEEEAAAQQQQAABBBBAAAEEEECgqwkQrNXVtijr02ECCioJA7XCmeouaJWxOv/8/E4WLs8RiKF56QK/LsRfe03HnMgM+8dfBMpdIPuu8Oz+6gLWhR10cSN93nrP6V92SzS9JpM9SlGfp19MCheU9I8F9TUM1tr2RsTL6WVexAzH1d/2rsMLi1OBWsG8fNkbNnmQz0SVi8y8yKPh+kybPrVwtFeXRBoyZWndXvd10sW09Is5CqhThocd/hk7w0tBzvcLbrv3eIlB/9xVU6YMlaR5blHTfuXatsFEzfwvl3v2qCs8aO61lWYqs6jAsuyWax7qR/q/7GnSn+eaPhyuXTWh/2W17GlyjRNOoot1NAQQQAABBMpd4IZrE/bI47Egw5a+uy6dnPTybjm+BPNcEQV8Nxd4k+csOmw0BfnM9jLJCj5XILYymN50fbzhGC99Qcqc+aUH6221ZzSVg0qRKtDonV0qcRxNTe8BSTden8g5ffq8OuJx9jFHOE+9vsr7mP07WaUV3/FsUtkZw8LpOvKvgs2UDUzHkuqHSj3KVcFIOrZUZmwdV6o09XULE6bAt/a0630f1Y0NuuFK20Y3NoSlqYd5NjdlntUxskpCqvT1jd6XfMtU5tMvrauWp2xow4clg4zfLR3nLbhcAZD+z7eJ2ljPnqZMYbpJoi0Z65RZTDe4qNzlnNlJUwCbmuyfejpqyhanpuAqHadP97L24TipIYX/X5ncnn4mdZOPfhMpwOy+e5sejxc+Z6ZAAAEEEEAAAQQQQAABBBBAAAEEykeAYK3y2Rb0pMwEcmX20YnC5jLB5Op+v746kZk6SZo9fM26iNXVRW3unKS1VhIse1qed08BXRxRyREFkQzwizVz5yQKLoFSbDkFqihrkTIA6YS++pgefKULVc01ZRnQxZAwSKm58dryui52TfM70GWX3ubNbfvFwPT55PNYGcXCEiRhhod57rNla2MZRM1njl9MSb8AszZHRrBwecoioIsXbW1BZqZtTT+j1vrnU2/Pbnb0WOYwXQwrtGmfWLs+013zWOMXLq+5KjU37Rdf/6eq4K781LBY4KBMhgqQ7ekX21QWTW2KX8TNDl7Ta4W0CRclbeBA84tuLU+lvqufCy6P2IisLBa6WPXyq5lBgMoGFn5HzJ6Z8EwLTdc7XKK2fXOtyneJWT79iy9lTp89TW93UZayrTm24cDawkya6wuvI4AAR/iTQgAAQABJREFUAgggUEwBfSc/+IX6oHThsKGN5ZiLucxSzvt9d8bthuvMlPFS39npx3jZ/ejlmYmu8MCf9Hb3nQmfPhEE3oz3wPWWpk+frr2PFSSvLF7pJQD7ebDZJC95uM4zmma34Hdy7+xXi/f8tlsStvDqhAezuav3NQyO0s1QCp5SWT4FKYXH3O3piSwe+P14sI8O8eNR/Q5Lb7fclMompexb2sZhX9LHae9jHdddtzC/YzuVA1WWM/VHv4EUUNbWpgyuP/xJY9lvZTS7/5Opsty6+SIM1Arnr2Nn7R9XLWj7MvW7QDeThNmYNc9NmyPBNlVWNxoCCCCAAAIIIIAAAggggAACCCDQVQRif+6tq6xMZ6zHsVPnauR1xsIrdJm9e1ZZLBqxk3Vxi7eUFqST12/IkFQZq/Akobqju7xVoiLfpkCK7OCQcNpTpzxLl59AVfYaBbR0xInkcN787ZoCKkn38KMxO+h3detOad1NPtkvmLQlgKZQoepY1Kqqonb6TAvRVj5TBbb8+GcxL4USsb1ezlAZ6s47TwGJqSWmTuBnBqDoIsJn7o8HF1yUWatYTRnxtCz5KdPBLV765cISnPBXGZlHHosF207v9+dfiAZlVaN+VWvKpamyHsdP+N3qXqLnmquSNm9uIuMiz4mTkSbBOLogpixTt/uFKl04a2ur8oC6zVsidux45kW3WTOSfoGraYm9229NBEFOhSxPfdVn3f79mcuY5IFNYfnGDRtT+0r6fFV6R8FJgwd7kGzaxT9dBDtyVGUMPbvBuewZd9xWWAYD9UnzUQCk5qXyOMOHWRCclp0pQn3Se0wX/NKbsjVoPzp1OuKZFCJ2hX836KJhmL1BwYe9vd8qAdnT9zvt+1qe5qWLrso6oH4010Zrel+GsjgM9wwSN92QyFnGZ7x/LymgTxkkwqZSMTd76aSaamXn8MDgs/l/b4Xz4C8CCHSOgN63Ef9w4H3bOf4stXME9H04yIOodZxWia1HtQezeMfP1Of+vtWxgY6FW/reb2m92zt9S/Nubpj6On6cH7+cO1aa6sesOg7UcaeOM1S2O/13so6lLvNj2FI2HTvLNTuATce3On7syKCpcB/VMV2uFvTFl5ndl1zjluo1BZWFNxG0dZmPPZH67Zk+fb0f907243jdTLFkWWN5xnAc3XyTHdAWDsvn79t+o4Yya2U3HRe3J+te9vx61sSC81Fn45nH+Nnj8RwBBMpHoFcPLxfs79l63rfls1HoCQKtCOg6kH7blvM1oFZWgcEIdDuBPv6+PeXXgBI6mU1DAIGKEOjbq8pOeMxFZ71t+/X2EzS0Ngv4aSwaAgjkEtDJ3c/+bn0QEPPmm5GgnIZKcxXSRnomls/+btyWLI0Ed1PrLlFduNcF+7ApMEClJBZckfZiOJC/CJwT0D6jiyLZbdmKiN15e/kcOCujVnZb7ifbJ16UCvKaEATFJG3P3sYoFZX20Hul2E0n+FUaJb30XrGXWe+r/dNfxOzEidSSjhxN/dX6P/xYJMiMpjJ701ooLTjdM4It9gxN4bS6WKRsAh11QWy+f/b88texhs8lBRgpK5Qu7gzonwyypOniqQKnVHZmpX9ejfS/I0fmv80UyPT6635i9Vx8cw+/aHlZWlazsNRh+vbQBcCDHpClYL/0pguWKkt4z93prxb+WFkG7rpD/xo/exXw9NX/XWWn6zLnp3I3uZouGF00PncAo8z0uS6zh77vXyjn2vHjZvv2tX7BNpjeS0Eu8H8tNQWyff6z9cF2UdYBlcnR9mvrBeGWlsUwBBBAAAEEEOg+Aspqqt8Zd96eeSyiYChlblrhpfF0U4KOZXW8SutaAjrJm/6bLVy73XtSj1TyUTePpP9GVUZl3czQnqbpNe/j534/hfNqTzbhcB78RSCXgM61KIuczgEq2yO/o3Ip8RoCCCCAAAIIIIAAAggggEAxBAjWKoYq8+wyAroj9PqFfuZmYdtXaZQHNNx0Q9JeW+WZEnw2zy5qDFIJ56qL9zQEWhJQ0I9K1mU3ZWQql6YT+idy9OdY2ol2T/JjKm237fWI6a5pZRcKy9uVy3p0ZD82bfLyIGnrnz1vXdx436jcwT7huApOeuAP6m2zB+LogslMz3rVkSXupk3xLFpjPNjHP6MG1KrMYMKzqKWWrpPVE84F2qk04vd+6HfEnQtkUhmS//jxeF4ZBHTh5ksP1geBqVUeZK8LeunZM5TJ66VXUtmnwvUePizZJFArHFasv7K+2gP6nlsUNQXS6kS9LkBml0AsZPnLcwQwrlkXTWW+8uV1RFOA3ZUe1HXl/I6YG/NAAAEEEEAAAQRaFlBA//XXti8op+UlMLSzBXQcrGCsxVlluWfNbNzuCuRTafD1G1IlILMz0bZlHRQwc83VCXv6mVT2NvVDgVodWQJRZTIXvZm0SRebDR/Rll4yTVcR0E1DP/hRrOHGqIEDk/aJjyZs0KDG/byrrCvrgQACCCCAAAIIIIAAAgggUH4CBGuV3zahR11MQHfoqSycsmqpqTSCglrCppOPOsFJQ6AlgRoPcFFmt+ySEHNnl89d7Kl9OWG/fTYzu9bcrP1b46lUiv519dZaicJ+/fIz8CqUdunkZPCvGGbqpy6KNNf0mbVocbQhUEvj6SKHMjmpX/k0lQ1UFq9cbbCX01HZvleXpDKIXXB+MigVmGvcYr+moCddmNq0JWq64DTIT9i3p6W2se/0aa1XT2sIiEt7mYcIIIAAAggggAACCJSNgDIgHz4SMZUs13mMqX6Th46Tw3bqlAXZ1ZRhTUFWQ7wUZH8P5MtuujlthZeD37otVUJR89DNBs01ZRDWzR0bN0XtAr9BRKU3C2m6uWSNlwlf4zeb6KYRnW8Jb3b50U9jwW8YPytjz70QsUmXxOy+e1u+eaaQZXfkuO+8GwmyHB87Zqbf/QpaK6dSmx25rp01r1eXNmawVh9Ugn7p8ojdenNh+1xn9Z/lIoAAAggggAACCCCAAAIIVLYAwVqVvf3ofQUIvOLBB2GglrqrFOvDh3l5r0NmKsN1xWVJG8xdexWwJTu/iyrfp5Ozq9ZEvTRE0ubOSdr4ceV1ElGl8lRKTpnkdMJ+zqzUifbO1+ucHujigN7ne/dlBuuoN9qW8qmEduBAxPb7v+y2eWvUg7U65uLG/MsTFl4Qam+AVHY/C30eloIsdLpc4+t9unR55pA5frGFCy2ZJjxDAAEEEEAAAQQQKC+Bvn3NPvj+uN16k/928d92uuEgvSnw6a0dqd8ICixaucrsj/6wPuM4Vzd9fPu7VV7ePDWlxlMmrs/+bsu/IXr6smZ5ae9cTb9N6rxkukqz60ag7PYLL/G+eUtqwM53Il6y04Isv0eORhpeD6fRzSd/9bdVdomXElfp9kJKvYfzKMbfXbsi9s3vOPq59sb2mGdsVybd3CbhePrdqczVuVzCcfjbKKCbK7PbJt93rlpgpv2fhgACCCCAAAIIIIAAAggggEAxBQjWKqYu8+72AgrS0snI7FZdnbQ/+eO4VRfhHXjWT1q+sT0S3EGqE5y0riOgk4W33pywG69PBIFQ5XgCVqXtrr82YQs9S5P6R0CK2ac+EbeVq6PBhQGVVdDd6bqwMM+DePp7qdVKaEP8hL9O+u/bn/l5Nunili8WFLpu2l86O1Cr0D63Nr6C9VT6c9mKiB05HPE7+xN2sV8MoiGAAAIIIIAAAgggUAkCffo07aWCgsJArXDoUc8ApSCpyZMaj3V1biIM1ArH2/VeJDhPMvq8xvHCYS39fdcDmH7562jDbxIFj912a+bNQUf8t5YyeKW3U6fN1q33HxreFDyW3U778NVrI/a6B0R90YPNdNNRZzf9dshuy1+L2gLPVJzrPMDGTZGglLu2y8CBnjX5Ss8W3EywW/Z8u/NzZStbuSrT+qgH9f3916ps8iVJP/8SJ2irO+8grDsCCCCAAAIIIIAAAgggUGSBIoSKFLnHzB6BChJQ4IHKeekEZXqbPi1ZlECtJcuiwQk6nWysqfGSY56p5rqFHRtMkb4ePO4cgaoK+OQuhxPcnbN1mi5VWZp0B/SV85sOq6RXrr0mYQ8/FjN9vqiNG5sMSnGknvH/lgRGeHDeXbfnuDLU0kQMQwABBBBAAAEEEECgTAVOnMjdseMndO6j8bj3RPC86bjNTd90zMZXnvptY6CWXlUQ1sOPRj0rVsJ005DaSS/NqGzm2e2491dZoB97Mmq6wS1XU7lGBT2p3GNnt1xu+h2mGwKzzwfU+2uPPB6z0PSQZ3F/9Al3ucTLTXopelrzAsqm9uabMTt0uHGccP9Z5xngBg+Odsg5NWUfX7suaidOms32IDqydjV68wgBBBBAAIFiCijLqo7vdOOsKmDQEEAAAQQQKDeBCrjkX25k9AeB/AR0x+a/eNp6pa8Pm+6AVHr9GdNynD0MR2rj3zo/+fPs81Grq0vNQCeDFr8UtdmzkjagPweibWRlMgQQOCcw5dKk/7Ct9x+4URsxIunlXPlcYedAAAEEEEAAAQQQQKA7CuhiV3bmXd0wNn1q5rmOSycn7Imno3bSg1TCNmCA2YSLCvstccgz1GZn8tL8FHi1wX+fzJqRWu5I/52ijF3pGc51I5GyTCnzuEoJvrA4agreytViZXKWdK4Hlm3Zlpnia+b0RJNALa3DVi/lFwZqhetUX+/ZxDw46LJ5mdsjHM7flIB+0z7whXrb9nrEA/9ipuxw6W3lqvYHax08GLH/9y2/6encubpFvv/9hw/Fu0y2ZZ37zJXtrbnX0315jAACCCCAQDEFfvbLmGdXTV2be/nV1PHnxz7ScinuYvaHeSOAAAIIIJBLoExOQ+TqGq8hUNkC29+MZARqaW10kvDuu+INd3125Bpu3dYYqBXOV3cEbtgY8QxbhZ0IDafnLwIIIJAuUF3tF2CKEGyavgweI4AAAggggAACCCCAQHkLKDjjnvcn7KVXorZpcyTIVKASfWGGq7D3ygKlwBSNp4zjEyckg6zDykJeSOvfL2nKWJwe9BVOrwCt9Hb3XQl78eVocC5EgVvKON73XCnHy+YmbM6shB06UGM//VXCdu9pnFIl6nVzXTk0BbPddnMiKKV+8lQkCEZb4Nmac7URI1LBMgqOSW8jR2a9kD6Qxw0C2pe1X15wQdLWezat9NYRhstfizQEamneyo72ypKoB2tV9sXit3dG7NWlUdO5z6mXJuwKP+84eFDS3tuden2Ll0S9xEtJKnuZMk3TEEAAAQQQKKWAAv2zv9cVnL1nT8SG871Uyk3BshBAAAEEWhEgWKsVIAZ3LwGdVFBGqjF+kqa9bcfbmSd5ND/d3bjrvYiNH9f++Wf3b+yYhAeDRYMTP+nDirGs9PnzGAEEEEAAAQQQQAABBBBAAAEEupfAKA8GuveeeHCeI7s0X7qEsnBdOKb18dKnyX6sG98u9yxRzy3KjPK64PykZQdrDRuatHvujtv77mhaMlDz1bwuGmf2qY8lbfErSc/M5aVxPFhn3tykFRpElt3PjnquAKLLPcjlsnmpso7qc3Nt0EDPgOz93+wZtsJ23igPPnKbrtoOeLYqlXvU+S5ZdURTIN/GTbGGMpqar15rb8t1blCZ3xS01dJ2be9yizm9zpt+74exhsz+y1ZE7d1dSfvdT8XtBz/2DGVHU0tftTpib74Vswc9e1lHbadirhfzRgABBBDoOgI7d3ph7hyHQjs82Jhgra6znVkTBBBAoCsIEKzVFbYi69BugePHzX7005iphrWaUqF/6J6E6SRfW9v0qUl74cXMg0LdqTn2wrbPs6W+9O1rwR2iS5c3nrycPIlSZS2ZMQwBBBBAAAEEEEAAAQQQQAABBNou0FKgVvpc8x0vfZr0xwuvTgTBOc+/4FnFT5vN8+CtqV6qvbnW2vIGDUyVRbzphubm0PmvK8Aln4Ce+z4cD0r5bdgYtQkTEjbp4uZdOn+t2t4D3QD5w5/EgixtugA70APV3u+Z1BQQ2N6mmzYf/IN6W/FaNAjYmjM7aQNr2z/f6dMyy3Kqn1MmJ/Paru1dp2JNv8ZLbNadK+sYLuPdXZEgY1gYqBW+fviwl+rc5gGRZZK1LuwXfxFAAAEEurbAJX4spIyv6d9XOjZUiW4aAggggAAC5STQ5YK1zvov9+pmzsjs2X/I+vXpbb17+bd0VovHPf35voM2ctggv5OuMdglHO34yVOebr3Ohg2pDV/ibxcSWLEy2hCopdXas1cnGSJ2951tPzEzeHDSrrkqYUs8LfhpP4lR67vOzTfEi3qn5u23JoK7QTf6naFKm687XWkIIIAAAggggAACCCCAAALlJ5Dwn2vb/CL2qtVRO8/Ltc2amTA/ZUFDAIFmBM4fnbSPf7Syy8c1s2rtellBXSrlN3FC17ZZvyFqr7+RuslSYIcORfwmyWiQua1dgOcmHuA3WF5/bcdexJ0xLWHbvQToFv+sT/islfHsygUdu4yOWPdC5tHMaXerqck9l+bGzz12+b26188RL1uR2n7z5iRtRFbp1fLrMT1CAAEEENB30s03Jux5z8p6zBM16DfW1VfyW4s9AwEEEECg/AS6VLDWcy+vtD/6yjds9TPfzpDevmOXff5Pv2bv7NobvH7b9ZfbX/7J/Q1BXb94fLH9r699386eOes/LKvtK1/8pN110/xg3Dp/7U//+lv21KLlptMBY0YPt3/66weDvxkL4UlFC2TXr9bKrFkbtSvnJ22IB121tV23MOHzSJjKK+qETCnSfg8doiCxtve5revKdAgggAACCCCAAAIIIIAAAvkLPPZE1JZ7+Si1jZsj9uLLUfvSA/XNXvDOf86MiQACCHQ9gXUbGgO1wrXb/mbEb641612mga7K6qHMZ0eORuz0Kc/kPzy/83XKHHbaM8j16hWuaet/S+Uw5dKEPfl01E75+oRNmcnmzk7YK69G7KAH0YVN51THjc1vncNpyunvGx5o99D3G+uQrlhp9hHfnsrYUqlNGeoUONhccF2lrhf9RgABBLIF5sxK2MzpiSBJw2i/MabSg4ez14/nCCCAAAJdQ6BpCqkKXK+Dh47azff9sX3hv349Z+//4h8esnFjRtrSx/+f/fJf/6ctXrrWfvPUy8G4+w4ctj//6nfty7//EVv122/bH/3evfZnf/sdO3TkWDD8l48ttqUrN9kjD/2VLXnsn23UiCH2l1/7Xs7l8GLlCowf3/RHdtxvSPzX78ZMf9vT9ONXJy1KEajVnn4yLQIIIIAAAggggAACCCCAQGkEVJJDNwilN12Yz34tfTiPEUAAge4scFGOc3cjPctRqQK1FEClcn8Kdim0DeifzDtQa9nyqH39GzH7//6+yn78s5gps1NLbfOWiH3zOzH7m69W2b/9e8wUwFbMVu23ft//ybjNm5OwwYOSphKl994TD857fvx3ErbgCr1uwc2rH/tooqLPhy71bZHdcr2WPU45Pj9zxuyp30btq/+7yr76j1X2+JOZAXfl2Gf6hAACCLRXQOWkVS6ZQK32SjI9AggggECxBJr+4ijWkoo439rafvadf/jP9pf/5f4mS1HQ1Yq1W+0TH7o5KH84Yexou+Gq2fbbF1YE4z738iqr7d/HPnTnQv/Cjtl977/eevXsYYteWR0Mf3rxCrt54Vwbe8FIT5XZ0z5x7822ZMUGO34i7fahJkvlhUoTUBrr3jnuVjt+wu9w9pKCNAQQQAABBBBAAAEEEEAAAQQ6SuDosYjpwml2238w+xWeI4AAAt1TQIFRKnuoICk1ZccYWJt6rP9XV5tdVaKSggqI+j8eQPUv344FwS6LFhfnlPoeD8x61LMuHjiQKrunc5JPeBar5pq+R37x65i9827q3OWbb0Xsl/5cmZOK2YYN9az+HqSlspGqKNCvX2ppgwYmg7JTf/j79XbTDdpeTW+OLWa/OnreBw40naO2TSW2VWui9vKrUTvplzQUHL5kWdTLOza/b1XiOtJnBBBAAAEEEEAAAQQqTaBLlEGMesqi0SOH2vYd7zXx37v/kP+oT2aULVQpw3Wbtgfj7tl30M4fNaxhOs3r/FFDbffe1BlSDV84f0bD8AvOG24Jn58ycvXt08uqYpX5A61hhTrhQSgWc7uqZPisEzqStsjhQ5XGOmHf/m7TH6n19d5Pj8CnIdCdBaLRSHA3JJ953XkvYN0rTUDvWx3X8L6ttC1Hf7uzgN6zvG+78x7AuleigN6zaoV+344cnrrL+60dmb+JL5tT+Lwq0Y0+I9CZAnrb6li50PdtZ/a5GMs+e9az+a2L2Hu7IzZnVtKUpaocmm6c/PcfRBsCkJSl6b57EzZqZNJLxcZty1aV2lPwVvJcmcDMz9GOXgcFiz3xdMwO+TLVFOzy/AtRmzHNTGX+OrKtXNX0vKQyZR05Eg2yWGUva9XGiClTY3o76sUiXn89apMndWzf0pfxm0ejtmJlJKhGoFKPCsy6Yl7xlqdld8b7Vjf3PvZk5v411zOKVeJnx2srm+5beu36hcXdbun7DY+7n4DetzG+b7vfhmeNK1pA33p63/o3b0WvB51HoLsJ6H0bvHW724p3gfXtEsFaLW2Ho8dOBoN79PBadOdaj5pqO3Yi9fqRYycsfZhGqQmGpzJnHTt+0npmTJuaz1F/XW1QP/9FSitIIPVFb9a/d3XD3XEFzaBIIw/ykyxPjIzbu+81/kjVXXrzptfYwHN3iOWzaE2/6KWkbX8raZfPidj8y6KelS2fKRkHgfIV0Jd8xH9hD+rX9ORO+faaniHQvQWi/nb1MEurruJ92733BNa+kgT0vtU7t6aa920lbTf62r0FFPBhlrSeNYXf4fPRDybt4ScStn5T0i/4R+z6qyN2ybguf5qme+8wrH1ZCOi8VA8/Ru7do33vNwXx6P37wsuJIFPe1QuiNnNaxC9wmW3elnr98BGzq6+IejCUjstLu/oKenp5acKWrkjahPERu2ZBxEaNSF14U4DPf/u7ejt2PNWnV5dG7K5bo3bbjZ1/DLJsWcIDtRpTQx3w+2mXLI3Zpz+W+pyd70GtpWxbX096oFY8Y5Ha9t/6Vw/YmhoNXEeP6pgLmqNHar0b110L1Wnp80fU+PnpjC4ETy48T+cwM/umAWPPr/bzNx3Tp2BBaf97b3fSli5vXKb2peeej9pNV1cF2c7SRu3Qh3rfVvubK9GzdG+kG6724LwTCVuyPBGcw75sTtRuubaqIs/zDh8at917Gs95a+MMG6rzfDl2rA7dcsysOwvoZv3+fcrrGlB33h6sOwL5COh9W9uX920+VoyDQLkI6LzUoH41ZRVzUS42ldCP0v266SSN/v1SUTJ1Z/x2sXNNj/udi54Z0K+PndGtZGmtru6s9e+bmq6f/82cNlWnIBy+97DnDaYVJDBkQA+r8ZNih46dsTP1mScgCppREUa+47aIfevfGtOFa9f4tx+ftd+5r/EkREuLVRrpv/vHKgt3qV88krSN2+J+B2A8+JBUCvdhw5J+Aa6luTQddtxPnp08mZq26VBeQaD4Ar384lPPHn4nqb9vaQggUBkCffwktu74PXIi8zinMnpPLxHongJ9e1UFmbWOnuR92z33ANa6EgV0E5Kybx8/VV9w93v0MfvQB81u9YAKnaJQ9oG9hwueDRMggECBArV9a/xcYNxO1uV3rqe52SvD0w9+3BioufWNuN15eyLIUPXN7zS+/uaOuO3cnbCFXjaulO17P4zZttdTATu7PMBmyQqzP36w3m9SNVv+WtQDtTIDs557MWEzZ52xWGPXS9ndhmUtXakOZAYarV6XtPcOnO6Qvp30+29VinbE8MzAlYYOZD3QZ3W1R9qF5/rCwQp0e/FVD+Rx1y89UH8uy1c4tG1/J0zUTcRVGWVyp09L2NFTp/1f03nWDjEbOiRm+/Y3eo25IGnVveqK9n3yopfP89x0GZ3RPdFLV9fZxAn5mWZMnOcTXYDSe/b0mfa9b/NcXMNo115rtmCBh2X7qimL2Ak/LaZ/ldZmzIjYmvWZb+6ZM+p9P+F3R6Vty0rqr64DHfVzUuV2DaiSDOkrAqUWGFbb0w76NaD6eGmPW0u9niwPga4kMGJgT9t3pM5LoRfvWLwlr1GDe7U0mGGtCHT5YK1hQwYG2WDefmePDffHam/t3G3Dh6Yea/jb7+5tYNJJ1p279tqwIbXBa8OHDrId7+xuGL7D56MyB0MHp4Y3DOBBlxBQMFUi6xhEJ7YOHY7YwNrWP+RWrYk2OXmjk3d6/cWXIrb/QMR69vRsXZ4y+4brshaUQ1Angn79SMw2bkqlFtcJF534Gza09b7kmB0vIYAAAggggAACCCCAAAIIlJlAXw8EoCGAQOUJLFuRGbCiNVi+woOAzmWvSl+jFV5u7OorE15+Mf3V4j0+eChir7/RGMCjJSkD0pp1UZs7W5mrModpuG4UPHLE78oe1LnnnCZe5IFZ72X2b/y4ZLsDteIe46NzbBu8dGC9x9eePzppd9yWCq7T+jfXevm1h1kzPEPZ8twbT+fudN5v/uWtn+drbhnh6zpn+Iefr/cSg1Hb5QZa7sUTm98eCvL9zP1xW702alu3RYLSh9OmtL8fYX9y/Z3g2+e5RZlDFACoc5ZdtWn9Kr3pPfS534vbsuU6xxwJzk2fF2Rmq/Q1o/8IIIAAAggggAACCFSuQO5fmRW4PmfO1ttZ/dL2psf19am7bAYO6Gezp020h372lJ06XWevv/WuPfPia3bj1XOCca9bMMsOHzluP3tkkf9QSdiPfvWsna47YwvnzwyG33j1bHvq+eVBgNfJU3XBfC6fPdn69iFKMADqYv/zTd+k6c6p7Lvnmox07oUzzUz//AvRIFBLoyn71uKXorZnb+aJp1zzXLc+auvWpwK1NHzH25Fg2lzj8hoCCCCAAAIIIIAAAggggAACCCCAQGkEFPyU3c6cjdiZHK/Xe0BP9s2B2dN25HOdx9L5rOwWnreaOb1pQI+CbTo7UEv9nePBZLUDGnuuYKkFVzTtb+MY+T3SjZBr1qYCtTTFzncitmhxfqfGb781EQRFzfAsVwqQym659oXscfJ93q+f2bXXJOyj/yFuky5Jthrgp2xPl81N2Mc+ErfZMxNFLUWodThvVDLoV7g+CkDU9lE/aOUtoGxyd92RsPe/L24EapX3tqJ3CCCAAAIIIIAAAt1DoEtk1tq7/7Bd+8EHGrbYzBs/bXOnX2zf/dqXg9f+7MGP2+e//I8279bPms5T3HrtPLvr5gXBMGXQ+rMHPmZ/9fXv21/8w0NBWus//+InbVCt/zL2ds9tV9uyVZvsjo9/OUjAPXrUMPvnv3kwGMb/up7ALD+pocCqc3F/wQpeOCaZdyYrnRTR9Okn4HRy7PDhplar10Ts5htznDlLG3W1n0TKbroD8H13KAV79hCeI1BZArqrtbPLK1SWGL1FAAEEEEAAAQQQQAABBBAoFwFlTX97Z2ZZMWWtGjkiaRs3Z74+0zMkVZXwLOzwYckg05Fu+gublh8GaelclzJBrVwdDW4qHO0Zdm68vv0BUeGy2vN3QH+zB75QH2SKOnU6YlMmd0wAkrJPZTdlwz/l5QUVENZak5H+HT+RmbVMwUpzZpWHXWvr0FHD77s3HtyE+sb21Pbp79uMhgACCCCAAAIIIIAAAgggUJhAJOmtsEkqd+xdew5Y/769c2bFUiauXXv226jhQ/zkSeYJFa3xseMn/cf4KRs5fHAGwK4D/oueVpCAapXXVHmmKa+fWo71ynWi4dWl0SCL1fSpCZt/hd9ZODD/t8n/z959wMlV1YsD/83sZrPpPYEQeieEhCR0QUSQIqDYffqwd32KXZ+9YVfeA33WJxb0/e0iCAgqoFISQkLv0gLpvSc78z93lt1sze5ms7szu9/DJ8zMred8z5y5d+/93XMu+7+quO/+7RfD2sPJLmxkT8jtKF37l3yrnrSyC0NZF+cSgd4UGFJTFbWDq2JlGq+8uym7GPrPm/ORDTs6bWoxTji+EOPH7bgtdHef1icwEAWG1VZHdVUuVq9Pj9VLBAhUhMDwIdWlIdfXbNBuK6LCZJJAEhg5dFAU0mWVdRvre/qGQoBA+QuMHl6TeuWviw2bu3dtJXsA6bY0XN2taejD1Ml/Gl6wWBpaLHu4bn4aFi+bvnZtLmalQJ5jjy50KiBoV+qtWJH97Z2LO1Kv7XvvWYzjUnDWfvs2/9s762lr5apcZMFd/T1df2M+rvtr84CtrNzveGvXvgerklfmuiAFf2W9Ex13TCGyoQGlnhUYO6Km1GY3belaffVsrmydAIEdCWT3gdaka1LleA9oR/k2j8BAFpg4ujZWpHtA29JIVBIBApUhsNuY2liSYi4Khb75m2TyuE48+VIZlH2Sy158pqtPytdsp5NbBFo1nZkFaO21x6Smk5q9H5GCvLJ/Uv8XWLY8F0uX5SLrwnzJ0uzCWhas1blyP/pYLpYv73jZ8eOLcfBBHf9ozp5ZjFvmRCkv2Vazp/WyJx8lApUqsHZdxC9+WZWGna0vwW23pzazIh+vf42LbZVap/JNgAABAgQIECBAgACBgSiQ9RR9dBp+7uij6occbDo8XtaT1pEzWk/vTadsSMOzzypGNoRf07w1zUNNTQyIQK2szFlv+P+8KR8bN9ULZCbHH9vxtbmmXtn70aOLcdYZxTjz9PZdW67jMwECBAgQIECAAAECBAgQaCkwoIK1WhbeZwItBVauzMWVV+Wjob+5LPjqj1fmO3zKbvXqiJ/+vKrUBXjLbbb8nF0Ie+sb60qBVy3ntfycXQD6wAXbSk/rZUEus44sxqhRXb+Q1HK7PhPoK4F5t+cbA7Ua8pC1sywwcuIE3+0GE68ECBAgQIAAAQIECBAgUDkC7QVDtTe9N0tWDnnozfK2t6/hwyPen66xZT2NrVyZrrGlByTHpOtuO5u47qyc9QgQIECAAAECBAgQIEAgExCs5XtAoInAvPm5xkCthsmLl+TiyYW5yIYfbC/NuS3fKlArl3rBKrbRCVbWo9D81FX6jCMKkQVudZSyZY6a3caGOlrRfAJlKDCkjd4wsx7jage3377KsBiyRIAAAQIECBAgQIAAAQIECFSYQDZEZdbDlkSAAAECBAgQIECAAAECBPpaIN0ilwgQaBBoq2ef6hTSOHbMjgNJ7rk39Z3eItWkC0BHTGu9XhaslfXW9bNfpP7yJQIDTGD6tEIMbhGkmA0JOnLkAINQXAIECPSxwH335+LHP6uKi79dFTffmo8tW/o4Q3ZPgAABAgQIECBAgAABAgQIECBAgAABAgQIEBggAnrWGiAVrZidEzjs0GKMGBGxdu325acdXoyhQ7d/butdFmyy7KbmAVsHH1iMNWvaWrp+2r8ezcXSNPTbBEO/tY9kTr8TGDw44i1vqos5c3Px+BO5mH5EMWZM91Rrv6toBSJAoKwFHns8F5f93/ag8SuvysX69RHPfY7f47KuOJkjQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE+oWAYK1+UY0KsasEqtJ9y/94+7ZYkIYpzG5kTk9DFR54QOvesVru76jZxbj73ohVq+rnDB8ecdyxhXh6US4efax5EFfTdVenYK4JE5pO8Z5A/xcYP64YZ57ecbvq/xJKSIAAgb4RmDO3dee6t92ej5NPKkR2LiQRIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0nIBgrZ6zteUKFch6/jn6qEL61/kCZMMkXvCubfHAg7nYsjXisEOKpZudE8YX4777cvHgw7kotohNydbZf78WEzu/S0sSIECAAAECBHZKoOU5SbaRtqbt1MatRIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsEOB1o/V73BxMwkQaE8glzrQyoZDnDa1PlArW66mJmLatEKrG6B771WMF72wENk6EgECBAgQIECgNwWOmt16uMNZR+pVqzfrwL4IECBAgAABAgQIECBAgAABAgQIECBAgACBgSugZ62BW/dK3ksCN9/aOiZy4sRi7LWnXrV6qQrshgABAgQIEGgisM/exXj5S+ri1jQc4po0JHM2nHMWrCURIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0vIBgrZ43tocBLFBXF7FsWevusxYvbj1tADMpOgECBAgQINDLAlMPK8bUw9KJikSAAAECBAgQIECAAAECBAgQIECAAAECBAgQINCrAq27/OnV3dsZgfIQ2LQpIusB69e/rYpH/pVrNWzhzuayqipi+hGte6qYeaRetXbW1HoECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUoV6HbPWoVCIV79zs+n4JaOg0/e+9aXxVHTD6lUK/nupwJbtkZ88+Lq2LChvoAL7qyKQw4qxitfXhe5LnaAtWVLRE1Nc6hnHV+I9etzce99uRiUWlwWvDVtausAruZr+USAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINDfBLodrJXFaC245+GSyxGH7hfDhg5p16gqryOvdnHM6DOBO+/MNwZqNWTivgdyceucfBxzdOeCqm5fkI+bbsmVhjzMhhV69rMKMX58fQDj6FERL39JXSx8KhfDhxVjVPosESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIDDyBbgdr5fO5ePtrXxiX/ebaePTJxfGqF50ar37xaTF65PCBp6nEFSmweEnb2b5lbueCtZYtz8Xv/pBvHDpxwR25WLcuH695dV1pwytX5uLKq/PxwIO5qE4tLutV66wzC1EzqO39mkqAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINA/Bbrd1VUujRP3jhSsdd0vvx7vfN158Yer/xGnvux98aVLfh6Ll63sn2pK1a8EZh3Z9hCeW9PwiJ0Y3TPm3pZrtdwj/8rFihSklaW//zMX96eeurJtZducNz8fd9zR7abXr+pAYQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECA0Fgl0WM1A6uKfWq9aeffTk+/f7XxhXX3hSnv+ID8bur/j4QHJWxggUmTSrGtMNbB2zNnlmIFIvYYRo5svUiWQ9aQ4cUoy51rrUgDbPYMv3pmnwUOjfCYstVfSZAgAABAgQIEOhFgbXrIv52Qz6+/d2q+Ov1+Vi7thd3blcECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAvxNoHUXSzSLOu+uB+F3qXWv5yjUxZffxMXnSuG5u0eoEel7gRS+oi+edWojRoyJGjIg4+dmFOPbozkVTHTm9EINaDGl4RAr+qq2NqKqKmDihdSBY1sPW/WlYRIkAAQIECBAgQKC8BS79SVX85W/5eHpRrhSs9b8/rmrVq2p5l0DuCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgXISSP3/7Jp0w813xHd/enncfteDcfgh+8ZFn3lXnHLizMh3pmuiXZMFWyGw0wJZUNWzji/ECccVSjff8l0IYxwyJOKdb6srDYe48KlcHDmjEFMP3R6gddCBxXhyYevArMcfz8WhB29fbqczb0UCBAgQIECAAIEeEXj0sVwsWdr8PG7Z8lxkQ17vv5/zuB5Bt1ECBAgQIECAAAECBAgQIECAAAECBAgQINDPBbodrFUoFuNlb/5U3PvgY3HszMPiB1//YOm1n7spXj8VyGILs8Cqu+5ON+D2L8aB6V9n4g3HjC7Gac9t+4bds08sxLzbc7FqdfMbfdOPaHv5fkqrWAQIECBAgACBshPIAu3vuDMX++1bjCzAvuV538aNbWe5veltL20qAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGC7QLeDtYqFYilQK9vknAX3lf5t33zzd1//1Dvi1BNnNZ/oE4EyEvjdH6pi3vz6oKqbbonYc0ox3vT6um7lMLvp9/wzC3HVNflYviIXgwdHHD27ELtNEqzVLVgrEyBAgAABAgS6IfDHK/Nx69z67lSz877ddy/GW99Y1yxg6+CDijFyZMSaNdt3NHx4xKGHOI/bLuIdAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0BWBbgdr5fO5+OA7XtmpfR6035ROLWchAn0hsHZdxILUs0LT9MSTuXgsDVe49147d0MudTwXC+7IbgTmYtu2XMyeWYyTT6or3fRruh/vCRAgQIAAAQIEek9gw4ZIAfrNx71++unWwxtmQ2O/4qV18Y9/5uP+B3Nx0AHFOCENnZ0NoS0RqHSBbdsi5s7Lx5z0t0qWjppdTH+vFKK621cJKl1G/gkQIECAAAECBAgQIECAAAECBAgQINCzAt2+DJtL3Qa95qWn92wubZ1ALwhkw+DUtdGJ1uNP7Hyw1r8ezcVvfr/9RuDcebmorc3H804tNJaokN4++FAuJk6MyIZTlAgQIECAAAECBHpW4KkUmJUFqrRMWaD+/vs1Px+bskcxXp4CtrLzREFaLcV8rmSB+emhkiuv2v63ypVX5WLd+ogDUhvYZ+/m7aCSyynvBAgQIECAAAECBAgQIECAAAECBAgQKDeBbgdrNRTo+5ddEX/6yy3p4u7GmHXEwfG+t74sxo1JY4ZIBCpE4MD9izF8WJRuUDRkOetNYfq0nb9RMeeZoXUatpe9Zr04nHJy/RPrD6QeGv7wx6pYszZKQ+5kQ+1kvTdk+5UIECBAgAABAgR6RmC/fVsPb5gNXb2j8z6BWj1TF7badwJZ778t0w035uOGGyM9SJKCFF9ciAkTdv5voZbb9pkAAQIECBAgQIAAAQIECBAgQIAAAQIE6gV2SUjIpf/vqvjGd38ZhdRF0F5TJsUV190Ub/3Q10qfQROoFIHsBtyZp9fF6NH1OR46NOLUUwppyMKdv0ExaFDr0len/TQEY111Tb4UqJUtlQ2ZeN/9ucgCuCQCBAgQIECAAIGeE8jOxbLzvrFj6s/zhgyJUjD9mGc+99yebZlA+QjUtPG3SkPulizJxT9v3iWXCxo26ZUAAQIECBAgQIAAAQIECBAgQIAAAQIEnhHYJT1r/fLyv8Wzj5sRF3/h3ZFPj6T/c85d8aYPfDVuuOWOODlNlwhUisC0w4tx+NRt8eTCXOy+WzGqu9lCjj6qEPPvSNFZTdKsmYVSsNac2/KxbHnrwKy77snHIQe3MR5jk214S4AAAQIECBAg0D2BqYcW47BD6krnfbul875B3Tzv615urE2g9wWOml2Ix59o/rdK01zcfW8uzj27vgfgptO9J0CAAAECBAgQIECAAAECBAgQIECAAIHuCeySR2UXLloWp598VClQK8vO8UcdHpMmjI1/Pf5093JnbQJ9IJANgbPnlO4HamVZn7JHMV7z6ro49JBi7DG5GC88pxAnnlAolere+1oHamUzsuEYJQIECBAgQIAAgZ4XaDjvE6jV89b2UH4C06amoQ7TEOz77lOMUSNb5++A/YqlodpbzzGFAAECBAgQIECAAAECBAgQIECAAAECBLoj0O3nx+vqCrFl67YYMTyNHdIkjR8zMlatXtdkircEBqbA/ukmx/77te4pa/mK1h7ZEIlTD6sP5mo91xQCBAgQIECAAAECBAjsGoFsONCsh7mph9bF8tTj7w8urYp1z/wJnw0Netyx/i7ZNdK2QoAAAQIECBAgQIAAAQIECBAgQIAAgeYC3Q7WatjcT3/957j2hnkNH+PJRUvjhpsXxNLlqxunverFp8bUg/Zp/OwNgYEsMHtmMf58XfPetZ57SqHbQy8OZFNlJ0CAAAECBAgQIECg6wLjxhXjfe/eFlnvv1u25mLa1EIMGtT17ViDAAECBAgQIECAAAECBAgQIECAAAECBDoW6HawVjZ0SDbk4aNPLC79a9hl7eDBsXrthrh53j0Nk+LMU45ufO8NgUoTKKQHy7Onz3dVOmpWIdaujZi/IG00taMjpxdi9kxPr+8qX9shQIAAAQIECBAgQKDzAlWpl9/D09CIEYZl77yaJQkQIECAAAECBAgQIECAAAECBAgQINB1gW4Ha+VT9Mpffvn1ru/ZGgQqQKCY7lPMnZePW+fmYt3aXMw8shDHH1eIYUO7n/na2oizzijEqak3rSzo0ZPr3Te1BQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAOQvswn6CdlzMX11xfdx4yx07XshcAmUm8Mijubj8inwsXpyL9RsibvxHPq6/cdc2m5oagVplVu2yQ4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDoEYFdGnXy+MLFsW7DxmYZLaauib7x3V/GJ7/yv7F589Zm83wgUO4Cc+a2biLZsIVbfZXLverkjwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQdgLdHgYxK9HCRcviTe//Sjz25OKorq6KE46aFt/41NsjG9vtI1/4blz9tzlx1nOPjROPPaLsAGSIwI4EhgxpPTfrCauqqvV0UwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjsSGCXBGt95Vs/j8VLV8Y7XvvCFMRSFT/99TXxsS//MJ5KQVwL7nk43vm68+Jtr3nBjvJhHoGyFDh6diFum9c8Mmv2zELkW3e4VZb5lykCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHyEdglwVq33H5fvOlVZ8dbzz+3VLKpB+8Tb/ng12Lw4Jr46ifeFmc85+jyKbGcEOiCwO67FeNNr6uLW9NwiKvXRMyeVYyphxa6sAWLEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKgX6HawVqFYjLXrNsT++0xuNJ1x+AGl95/5wOsEajWqeFOpAnvuWYw996yr1OzLNwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQJkIdDtYq1goRjEFbFWn4Q8b0tDawaW3Y0eNaJjklcCAElj4VK7UG9eGDRFHzSrEgQcUI5cbUAQKS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0EKg28FaDdv72Jd+EINrBjV8LL1+8HPfiZpB23fx6dTT1onHHNFsGR8I9DeBJ57Mxfd+uD148f4HquL5ZxTimKMNn9jf6lp5CBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJdEdgeSdWVtZosm8vn4oVnPKvJlPbfjh0zsv2Z5hDoJwK3zsm3Ksmtt+VSsFarySYQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgMIIFuB2vl09hun//wGwcQmaIS2LHA2nWt529Yn4u6uogmo4W2XsgUAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBfi3Qugugfl1chSPQ8wJHzWo93OHMIwsCtXqe3h4IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAmUt0O2etcq6dDJHoA8EDj2kGKc9txBzb8vHps0RM2cU4ojDC/Hn6/Kx4I587LVXMY49uhB77Vnsg9zZJQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQF8JCNbqK3n77bcC+dRf3YknFOJZxxdKQx9Wp1b2459VxUMP50plvuvuXNx3f1W8/z3bYujQfsugYAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAi0EDIP4DEhdXSEWLloWhULrIeyyRdZt2BhLlq1qwecjgfYFcik2KwvUWr4iFw8/Uh+o1bD0tm0Rt8/X/Bo8vBIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBoLAgOhZ69NfuzT+3+V/bVaf0w7dL37x7U+Upv36yhvi8xf9NLZu2Ro1NYPik+97bZz7vONL8zanaR+98Htx9d/mRBZus/eUSXHJhReUXptt0AcC7QhkQVsSAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgQERrFWMYhw/e2p8+J2vaqzx2tqa0vuly1fFp776o/jEBefHeWeeGP/3h7/Gx7/8gzjxmGkxZtSI+M0VN8Qt8+6Nyy/9QkwcPyYu+OTF8bmLfhLf+8r7G7flDYEdCYwdU4wD9i/Ggw81j9p6+F+5OKE+JnBHq5tHgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQTwQGzDhsw4cNjf33mdz4b4/dxpeq8C//uD1GjxwWLz3n5DRkXVW88rznxpDawfG3f84vzb/mhrlx+slHxb577R7DhtbGa152etw89+5Yt35jP/kKKEZvCBw5vfXwmtnQiCtWNg/g6o282AcBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDfCAyInrUy2gX3PBzv+/S3YvSo4XHqibPiuFlTS+KLl66IPSdPbNTPpzHr9pw8IRYtWdE4/+TjZzTO32uPSVEoFiPrkWv4sCExqHrAxLs1GnT3TcOwgNXJrtjdjZXp+ukrEg88mIv1GyKmHV6MDRtaB2Vly6xckY9JE/qrQplWjmztlEBVVS6y30e/eTvFZyUCfSJQlU/tNv3TbvuE304J7JRA1m5zjrc7ZWclAn0lkB1rc+lPOsfbvqoB+yXQdYHsb9vsmKvddt3OGgT6SiBrt9Xp2pR221c1YL8Eui6Qmm2p3RbDPbSu61mDQN8INLTbXE677ZsasFcCOycwqCofhbx4g53T69u1BkSw1uGH7FvqFau2pibufuDReOP7vhIXfvTNce7zjo/Va9fH4MH1QyI2VEVNzaBY+0zPWWvXbYjaJvMHp21kaU2anqXRwwaVXv2v8wLV+fqD/PDa6ihmEUv9LK1aHfH1i+tiWX28X1x5VS7Of0U+Bg0qxNat2ws7ZnTE0TOq04307dO8I1CuAtlFsez83G9eudaQfBFoLVC6eZwmVztXaY1jCoEyFWhot4Oq/I1RplUkWwRaCWQBH9lftTUe5GplYwKBchXIHkYaVF0dtTX975pUuZrLF4HuCmTtdmi+OoZot92ltD6BXhPI7gMNHzKoX94D6jVEOyLQywLZfaCRQ7XbXma3OwLdEsiuJ48clkJ+/HnbLce+WnlABGu95PnPbuZ7wScvid9ddWMpWGvUiGGxpWkETVpy8+atMXL40NI6I9Lr5i3bI2w2b9lSmt4wf+nqzc227UPHAuNHDS5dyF61bkts2dZ6eMCOt1DeS/z1+nwK1NoegZX1rvWXv9fFOc8vxo1/z8XSZbmYskcxnvPsQixfu628CyN3BJ4RGFJTlQJXq2Ll2vrfQDAECJS/wLAUFJ09ebx6/fbzmPLPtRwSGNgCw4ekQP50YWzNBu12YH8TlL6SBLIL2Vnv2+s2+tuukupNXge2wOjhNelaYF1s2Fw3sCGUnkAFCYwdUVNqs5u2aLcVVG2yOsAFsvtAa9I1qf54D2iAV63i92OBiaNrY0W6B7Strv/du+3H1aZoA1xgtzG1sXzNligU+iZaa/K4IQO8BrpX/AERrNWSaLcJY9Iwh8tLkyeOHxOPL1zSuEh2kfWJp5bExPGp26OUJk0YG489uahx/mNPLi7dQJkwrn5+4wxvCDwjkA1/2DI9/EguXvHSupg+LWL16lyMHt03P5gt8+UzAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA7wls7/6n9/bZ63v64sWXxf0PPx5bt22L+Xc9FH+45p9x3OyppXyccsLMWLV6Xfzy8r9FXYoU/vlvrzhIZigAAD48SURBVItNm7fEyccfWZp/2kmz4uq/zolHn1gUGzZujkt/eXUcO+uwGD5MlGCvV2SF7PCwQ1sHYh18UDGqqiKy8Z4FalVIRcomAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGAXCwyInrXmLrg/fvKra0p0uRQtc+Zzjo43v/qc0uesB62Pv+ff4wv/9dP4zNcvjUGDquNT73ttjB09ojT/xWedFLfefm+cff5HIusvacrkifHtL15Qmud/BNoSmDmjEHffk4unnq7vYWtM6oTtWcfrMrQtK9MIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgNJIFdMaSAUeM3a9bF85ZrSsIZDhwxuVeRt2+riqcXLYvKk8VFdnbpAapHWrtsQ69ZvjN0njWs256nlG5t99qFjgWys8prqfCxbvblfj1f+5MJcbNgQceABxVKPWh3LWIJA+QoMqamK2sFVsTKNVy4RIFAZAsNqq6O6Kher12+tjAzLJQECMXxIdWnI9TUbtFtfBwKVIjBy6KAopMsq6zZuq5QsyyeBAS8wenhNbNlaFxs21w14CwAEKkVg7IiaUpvdtEW7rZQ6k08C2X2gNema1JZtHmT3bSBQKQITR9fGinQPaFsaiUoiQKAyBHYbUxtLUsxFodA3IT+TxxmNrjvflAHRs1YGNHLEsNK/9rCyAK299pjU3uwYMXxo6V+7C5hBoIXAlD365kexRTZ8JECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQKBOBfJnkQzYIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQrwUEa/Xr6lU4AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTKRUCwVrnUhHwQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINCvBar7dekUjgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoNcFNm6MuO32fNw+Pxd77BFxzFGF2GNysdfzYYcEyk1AsFa51Yj8ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQqXODyK6virrtzpVIsXRZx511V8f73bIthwyq8YLJPoJsChkHsJqDVCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEtgusXRdx7331gVoNU+vq6nvaavjslcBAFdCz1kCteeXuFYFt2yLuvicfjzyaiyMOL8R++xYj1/x41Cv5sBMCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBbAnV1uSgUWu8tu4cuERjoAoK1Bvo3QPl7TKCYhtq95H+qYvmK+uis2+dXxZHTi3HeC1K4sESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBPqpwOhRxTj4wGLc98D23kzyaey32TPTjXSJwAAXMAziAP8CKH7PCTzwYK4xUKthL3fclYv16xs+eSVAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAv1T4Oyz6uKE4wsxbFjEQSlw69WvrIuRIwVr9c/aVqquCOhZqytaliXQBYGnF22PEG5YLRuDd8nSXOw7zAGowcQrAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPQ/gZEjI04/tRDPe24hcq1vn/e/AisRgU4K6Fmrk1AWI9BVgRlpyMOWB5yxY4qxz94CtbpqaXkCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqEyBlvfNK7MUck1g1wkI1tp1lrZEoJlANgbvGc8rpG4c6yfvvlsxnn+WiOFmSD4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAaQgGEQB1BlK2rvCxx3TCGOOaoQy1fkYsJ4PWr1fg3YIwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgfAT0rFU+dSEn/VQgn1qZQK1+WrmKRYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDogoBgrS5gWZQAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQI7KyBYa2flrEeAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEuCAjW6gKWRQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQILCzAoK1dlbOegQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOiCQHUXlrUoAQIECAxwgTVrI+bdno8xoyOmHlaIakeRAf6NUHwCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6IqA2+xd0bIsAQIEBrDAnHnF+On/VUehUI9w1TX5eOfbtsWwYQMYRdEJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEAXBAyD2AUsixIgQGAgC/zl+mJjoFbmsH5DxG2ply2JAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6JyAu+ydc7IUAQIEBrTAho0RTy1qTfDYY7nWE00hQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE2hQQrNUmi4kECBAg0FRg6JCIww5pHZh1xBHPjInYdGHvCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgTYFqtucaiIBAj0isGZtLubelosVK3Mxe2Yh9tm72CP7sVECPSFw5qm5WL6iEE8vykU+hfoeekgxph7qO9wT1rZJgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAv1TQLBW/6xXpSpDgdWrI755cVXU1dVn7o47q+LUUwpx0rP0TFSG1SVLbQjstWfE295cF08uzMWokREjRgjUaoPJJAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0K6AYRDbpTGDwK4VmDsv3xio1bDlObfloyBWq4HDa4UITNmjKFCrQupKNgkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgvAQEa5VXfchNPxZYtizXqnTr1kVs2txqsgkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL9UECwVj+sVEUqT4FZM1t3oXXYIcUYOqQ88ytXBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECu1ZAsNau9bQ1Au0K7L9fMU4+qRAjhkfkU8ubelgxTnlO6wCudjdgBgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQEULVFd07mWeQAUJ5NIoiKecXIhnn1iITZsihg2roMzLKgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQLcF9KzVbUIbINA1gaoqgVpdE7M0AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKB/CAjW6h/1qBQECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECJS5gGCtMq8g2SNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoH8ICNbqH/WoFAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlLmAYK0yryDZI0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgfwgI1uof9agUBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAiUuYBgrTKvINkjQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKB/CAjW6h/1qBQECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECJS5gGCtMq8g2SNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoH8ICNbqH/WoFAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlLmAYK0yryDZI0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgfwgI1uof9agUBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAiUuYBgrU5W0LoNG2PJslWdXNpiBFoLPPV0LlauyrWeYQoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMCAEKgeEKXsRiE3b9kaH73we3H13+ZEFmaz95RJccmFF5Reu7FZq1aAwLa6iHvvzcWIERH77F3sUo6XLM3FE0/kYuphhVizNhe/+GU+li3LRS59iQ48oBgvOa8uamu7tEkLEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIVLiAYK0OKvA3V9wQt8y7Ny6/9AsxcfyYuOCTF8fnLvpJfO8r7+9gTbMrUaBQSAFa9+Xi2r/kY8XKXBSfidEaPDjikIMKcfxxxdh9t+2BW9kyc26r7y3rqFnFGDWqGN/9flU8vah+2u//mC8FaDVsJ3t94MFcfOHL1TFoUMSLU9DWYYds314lmskzgb4U2Lo14o678vHoo7k4YlohDti/WGpzfZmnctz3xo0R8+bnY+myiFlHFmPE8Cj9dtWloNSjZhdj3Nj2f4f+lWxvX5CPKXsUY3oyzn4PezItSr+f2e/qyJFZXgsxPOW1M2nLlogFd+ZLgbLTjyjEfvu2/i5k5b37nlw88FA+ph5aiIMPKka+m32MZj0mZvktdMKyvXJkx5777s/FPffl4+ADC3HYocWoqmpv6frpjz6WK9XpHpOLMSOVt716STHn8c+b8zE35XHbtixgOOLZJxVi5Ij6Ol+xIhfX/S0XixfXm2fflWXLU3lSnvbZsxir10YsT8tkabeJxTj37ELsvnv735f63PXc/9etT9/leflYvSZidjruNj0m78q9rnqmXjvTRrLg7nt28fdqV5bFtggQIEBg5wU6c36x81uvnDUXPpWLuen4m50zzpxRiKFDeybvDeedHZ3fNOw9O3/JzsOy88XsvDF70CpL2bnLnLm50vlU9nf66NFtn7ssemb97Nx49sxi2k7by9VvtfL+v2FDlM7jl6YHx2bPLJTO5yuvFM1z3HDN5t7786VrNIem6ykdnTc334JPBAgQIECAAAECBAgQIECAAIHyEMgVUyqPrJRnLl53wZdiv712j49fcH4pg/+Yc2e89YNfj5v++K0YPmxIPLU83dWUuiQwftTgqKlOPU2t3hxbtqW7wWWUfv5/VXFvumG+o3TOWYUU3FCIh/+Vix//tKoxoCvrNWv8+GIsTb1qdSWddEIhTn1ueTl0Jf+WHRgCQ2qqonZwVaxcmyJiyiRlF+q/eXF1rGoyQu2M6cV40QtS5ITUKLA+Bbd847+rI7vZ2JCy36uGo3/2/lWvqIuDDmx9OnDlVfm4+dbt0UzDhkW89z+2lYJNG7a1K1+zm4B/SEGuDSm78fKut9XF2B0Ek2XLZkFIWRnXpsCihnR0+p0+O/1eN03/872qyIakbUgHpuC+f3/Vzn9fsoCp//1x8+PAq19ZV+pBsWEfnXm9NB1LHn5ke76ywLg3v6H9fF3953z846btTtkN06xeamqa721ITXV8/isRq1Y3n57V+dvfUlfy+vFlCbl11TdfocWn884txJHpRm1vp5UpQPq/vlUVWQBVQ2o4Jjd83hWvjz2eix9e2rxe22sj2f6+/d3tQdrZ56wtZd8DicDOCAwfUh351EjXbEiRlhIBAn0q0Nb5RfZ3YHbsaZpGDh0UhXRitW5jOiHphykL+r7qmu3nHYPSI3/veVddCozq4glEBzZ/Svu4Ke2rIQ3Lzm/e3f555+3pQYTf/mH78tl5Y3Z+s3JlxM9+0fw4/vrX1MXeezXP72235+P3lzdf/x1vrYvx45ov15CfSnvNAty/8V/VkT3c0pBOS9cdTkzXHyo5ZefeWVBfQ9orPVzwxtd1/bxr9PCa2LK1LjZs7vq6Dfv2SoBA7wqMHVFTarObtmi3vStvbwR2XiC7D7Rm/dayuwe08yWyJoH+LzBxdG2sSPeAttVV9t8N/b+mlJDAdoHdxtTGkhRzUSj0zfWMyeOGbM+Md10W0LNWB2SLl66Ik4+f0bjUXntMKl2IXbp8VSlYa/zIHu5ipHHP/efNoKr6C6Kjhg1qDBYoh9KtSBd173ug4z/459xWFWeeMih+fXsh5X/7D1/2tquBWlm5b5mTj1ecl7rZkgiUsUA+nyv1QFROv3nz7yymQK3mfzTcdXcuXnne4FLPUWXM2atZmze3mAK1mjs1+ekq/Q7Pm1cdx8/afrMqy+CmzRHzFzT/TcwCvx59pCaOO2r7DZJdWZi5c7N8bv9dzYJy7rqzOl50TvO8tdznrfOKKfCoeRnn35GPl79gUAx55jzxkUeLKVCr+TIPpQCpus2DY9KEllvs3OfftXEcuP326jhu5o7z23TrixZHCtRq7vzkwlysXVkT++7d2jkLups3v/nyWa8JjzxUE886tvnyC+7OArWaL5vtO6v/OxdUx4os0LHpl6Fpxnbw/uZbquK0k3r/uHXjjYUUqLX9+5FlseGYvIPsdnnW7+e3Pr631UayDT/0r2LqTbP59+rBh1LPZFsGpx5Zu7xrKxBIvYPUt+PswQaJAIG+FWjr/GJBOr94RZPziyyHDe22dlAH3WL2bXF2au/ZacKcuc3PJbammLR77h4Uz39e8/OOndrBMyttTuc381uc36xP5zf/Suc3xx/T9n7m3tbGeeMd1bF4aXZ6s/18IXs7f351zDq8+e9qe+edLzm3+XLdKVdfrjt3TjEFajU/R5l7Wz5ecPqgbvcs21flWvh0+k482vz7+PgTudiwZnDsNaVruapOx9vsWDt0sMuiXZOzNIG+E6iuzkV1uqY8vFa77btasGcCXRPI7gOV2z2grpXA0gQGnkBVug80Znh53bsdeLWgxAS6JpDdv80ebGhya61rG7B0nwr466YD/rXrNqTeZLZ3VTH4mW4r1qTpWaoZ1D8u5HXA0COzB5XZTaily4qdume9fEUxRafmY2GLm/47i5QNUeV7tLN61uttgZpBbd8s6e18ZPtbtLj5zYdsWtYDQjbsybgx5ZPPLF99mZ5e3PyGRlt5eWpR69+hJUuLpYCtlstnwUU98Zu1OQWHLV3eOq9t5a11nlqvlwU1rVqdi1Ej678LbX1fspt3i5dE7Dl5547lC1sE6WT5ym4idcVn8dLW3+NsO4uW5OLgA1rnKzsGZUMVtkxPt1EvT+/gOPVkymfW88TOpKXL0xCTke+xHtbay1Nb5Wk4Jtfuwtj5lkF9WX7a+x62971aknrZnLK736H26tL0jgWyi2MSAQJ9K7CojXOolucXTXPYH9tt1jtTW4HfT7dx7tjUoqvvs7/FN25qvVZb5zfZUllvUUuWtj7/y47XWbBWy/RUi/OzrB539ryz5bbL9fPTi1r7ZMNIb9mST8Nhl2uud5yvxUvaO2+OOGDf1ufNO95apLPZlJ4Jku5oWfMJECgPgXwWF63dlkdlyAWBTgqU2z2gTmbbYgQGtIB2O6CrX+ErVMCDvxVacSnbgrU6qLsRw4fG5iya5pm0Obuql9LIND1Ly9aku8tSlwRGD6tJT0LlYnXqAndrGXWlOWlypKEc8s2G0WqrYNOmpiEuUlTBzCNzcc21zW+kZbF8z3xF2lq1zWm7TSr6HrUpY2I5CQyurkpDrKX2UUbDMh06NeLyq/PNgiwnpJ5sxozfktpUOen1bV6mHZGLW25r/lvVMkczjyy0+h2qHR4xZY98PLmw+dJTD9+Wlu2ZYX6OODwXt93ePK/Tp7fOW/McRUw9POKq65rfoJm8e8SwUdu/C/sfVB9E1eSQnnrITGXce+tOf1+y48Cfrm6e31ltWLbMb9PPe+6d8jk0H1nvEQ0pO5bsf0Db+RqUegrbe698PPZ4w9L1r9Om1bWqlyNnVKU20nbnWVmdZzfs/nxd8/w332rbn2bOKMbqjen8p42gsbbX2DVTp8/IxV33Nc9vwzF53S48HTsy1evTVzXfT1ttJCvVAel7NSgF7jcdYmh4ajt77Ln9u7drSm8rA0VgaBpyOJf+W7+5Z35nB4qjchLYFQKdOb/I9jMs9cyTHvvpt8OpHXZILu5Mvdc2TUdMb33e0XR+V98PTudke+2Zj8efaL7m4dPaP++cns5xb53bPF8z0jDNS5dF/OVvzacf2cb52fRpudRDZ/PlZnTivLN5Dsv30xHJZ06L8+pDDko97hY37/S5b1+Xdu99I/Wam2/24EIWsL/v/m2fN+8ovyOGDIqt2wqxKQ2FKBEgUBkC2bDDm1Kv4Vu2abeVUWNySSAiuw+0ftO2sroHpF4IENixwJg0XPiaDduirtD2gxI7XttcAgT6QmBc6lVr5bqtpZHh+mL/5TQiU1+Uv7v7FKzVgeCkCWPjsSfT45nPpMeeXBz5XC4mjBtdmrKlRbfyDct5bV+gUBqSIFe6MLYlXRwrp/SCs4vxhyvysWZN84u2qcpL6eB0cfPEZ6ULA1uLMTONjrlkaVVkw65l6fAUxHXg/oW46s9VHQZ8lVZI/0vxL/HSF9Wl7TVM8UqgPAWqUiOoLuTSd7V82uywdFPnrNMj/nFTPj3xnwUWFePUUwrpt2X7sCflqdm7udprz4gTT8inIKj6Gxv77lOMwemmxkMP56KYqnPqYcWYPavt36EznleMa/+Sj0cfy6Vg1ohjjy7E2LHZb2DPlOHEE9IwJhvzcf8DaViSFLA044hCHHRgx/sbNSri9NMibrol+/1ON/v2KsZp6buQ/VY3pKr0e3vO8yOuvzEXy5bnIguUfc6zC6VxvFuMEtmwSoevM47IenirPw5kh7bMctbMti13tLFz0rHnr3/Lp16+cjF+fDGefWIh8lXpZlo7zqefVkxBVvk0DEyqlxQYdPRRhbRea6eRI/Nx3tm5+OPV2VCY9TnIpZi2LMDp0EPq8/n441XxQBq2r3Ro3lEmn5k3KbmdcHxz206stksWOeCA9B08Jp+G58yXynPQgduPybtkB89spFSvi/LpxnQKBu2gjVSnM+lzzkrfq7/nYvkz36tTTk7DNabx4csoHn1X8thWDwtkT0FlnWqV0/G2h4ts8wTKVqAz5xdZ5msHpZ6X04G0v7bbk0/KpQfY8pEN81tbG+nv4ELsu0/r847uVmTD+U3Deecx6fxm3Lj293PC8blYtz4f992fK/X2mZ03HnxQIfZOgfDLl1fF3fek0NfSeU+hdE7Z8ryqYf3svHNQGt05C9TK1m+5XHfL1Vfr77VX878BDtg/nfumc5Sm58d9lbfu7Pfc56fz5uvz6VpMui6XzptPPqkQuVz7583t7atucDG2pZO1/tpu2yu36QQqWaCQ/sbSbiu5BuV9IApk58hZcHS53QMaiHWhzAQ6K5BdI87abXbMlQgQqAyBrN1mx9rsfFmqPIFcMaXKy3bv5fiy314b3/rR7+OnF/9nTBw/Jt79if8udVHxva9+oJSJp5b3crcSvVf0HtvT+FGDI7sRtWz15rI9Uc9u5G9NHRoMH5r+oNiai2HDi7E5DcswcmRrlg3P9IYytL6ztdICS5flSsOxrV9fTAEBaeiIVbm49q+pp43Ue1fW88+S9LTv9GnFmDSx9fZMIVCOAkNqqtKQsFWxcu0zER9llMns/GPVyjQm81iHsx1VSzZEZDaUzegU2JSlbCi97AGZLOito7Qy+Y4aVYx8886rOlptp+evWZtufKaAsmdGHu70drLyZEMfjh3T/nchO+tZkcozbhd+XzLLbLtNjwOdznSTBbMhPLO8NwQIN5nV5tuV6dgyckQxskC0ttKw2upST5bZUxVLUyBY1lay7WfBek1TdhzLgpSzNrR+Q7rxuS59V9K/LEA5e134dNbPT3YMK5aC9pqu2xfvs5uom5J5W8fkXZmfrrSRnvhe7cqy2FblCAwfUl16MGRNGfVkWTl6ckqgZwQ6Or/IevrIbkSt29i/e8Rbnc4Vhg4p9vgwyNl558h03lnVyfPOtem8MTu3aXneuD6d92bnrkNSr6Q7Sjt73rmjbZbTvOxvgPXr68/lyylf3c1Ldt7cnfP50anHgC2pV60Nm/XQ0926sD6B3hIYm3oMyNrspi3abW+Z2w+B7gpk94HWpNFVBGt1V9L6BHpPYOLo2liR7gEJ1uo9c3si0F2B3cbUxpIUc9FXwVqTx3Vw4aW7Bezn6wvW6qCCN2/eEh/6/Hfi2hvnlW5UTpk8Mb79xQtinz13K60pWKsDwDZmV0KwVhvZNonAgBYo52CtAV0xCk9gBwINwVrZsMMSAQKVISBYqzLqSS4JNBUYKMFaTcvsPYFKFxCsVek1KP8DUUCw1kCsdWWudAHBWpVeg/I/EAUEaw3EWlfmShcQrFXZNWgYxA7qb/DgmvjmZ94Va9dtSD2SbIzdJ43rYA2zCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0FpAsFZrkzanjBg+NLJ/EgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBHZGIL8zK1mHAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBLomIFira16WJkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwE4JCNbaKTYrESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoGsCgrW65mVpAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI7JSAYK2dYrMSAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEuiYgWKtrXpYmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDATgnkiint1JpWIkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFOC+hZq9NUFiRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMDOCwjW2nk7axIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDTAoK1Ok1lwV0lsG7DxliybNWu2pztECDQiwLz734obr/rwV7co10RILAjgbq6QrQ3onV7x9srr7s5Fi9dsaPNmkeAQA8K7Kjdtrdb7bY9GdMJ9LzAilVrY/Gyle3uyPG2XRozCPSZQEfttq2MLVuxOi7/8z/bmmUaAQI9LFAoFGLRkhXx+MLFsW1bXZt7y47FGzZubjZPu23G4QOBXhXoTLttK0PabVsqphEoHwHH2/KpCzkh0B0Bx9vu6PXuutW9uzt7G8gCm7dsjY9e+L24+m9zIpcg9p4yKS658ILS60B2UXYC5SZw/LnviNVr1jfL1gfe9op47cvPiN9eeWNs2bo1jjz8wGbzfSBAoPcFVq1ZFy983cfiU+97bZx8/IzGDHR0vP301y+NL/3nW2LShLGN63hDgEDvCLTXbm+ed0+84b1fbpWJP//f12LypHGh3baiMYFAjws8/OhT8cb3f7nxQaOD9psSb/n3c+OM5xxd2rfjbY9XgR0Q6LJAR+3201+7NP7f5X9ttt1ph+4Xv/j2J+KBR56MT3z5h3HOacc3m+8DAQI9K/D7q/8en7/op7F+w6bSjsaOGRlf+PAb48Rjjih9fuSxp+IdH70onnxqSenzWc89Nj734TfEoOpq7bZnq8bWCbQr0FG7dbxtl84MAmUh8J2fXB7/9YNfxx9/fGHsu9fupTw53pZF1cgEgXYF2mq3jrftclXUDMFaFVVdlZ3Z31xxQ9wy7964/NIvxMTxY+KCT14cn7voJ/G9r7y/sgsm9wT6mUCxGJEFZzVcGMuKN27syH5WSsUhUNkCH/js/8R1N94W2Y3ilj1rOd5Wdt3Kff8V2FG7bWjHv//R59NDDdljDfVpUjpnlggQ6BuButTLx7+dd2qce/oJpRvCF33/V/GVb/8iTjtpdlRV5cPxtm/qxV4J7Eigo3ZbjGIcP3tqfPidr2rcTG1tTeN7bwgQ6H2BQYMGxSff+5o46djpkc/n4yNf+G588eLLGq9JfSY9bLTf3rvHr7//mVi4aGmc/x8Xxu+v/ke85PnP7v3M2iMBAiWBjtqt460vCoHyFcg60/jWpb9rlUHH21YkJhAoG4H22q3jbdlUUbcyYhjEbvFZuSsC19wwN04/+ahSpPawobXxmpedHjfPvTvWrd/Ylc1YlgCBXhDYbeLY2H+fyY3/Ro8c3mqv2Y3lL/zXT+NtH/56bNzUvCv6VgubQIDALhX40DteGX9Iwc+DB7e+udSV4+3S5avite++MLInMyQCBHpWYEfttmHP+++9/dibHYezgJCWSbttKeIzgZ4RyHrSetOrzo4saHLs6BHxwjOeVRqi6eFHF5Z26HjbM+62SqA7Ah2122zbw4cNbfw7NzvW7rHb+DZ3+dd/3B4vedMnY8E9D7c530QCBHaNwFmnHBPPP/W4GDF8aGTXi8ekY27DNaiVq9fG3DseiNe89PQYOmRwHLjvlDj1xFnx5+vntrlz7bZNFhMJ7HKBHbXbhp053jZIeCVQPgJ33vtIfOIrP4wLP/KmZplyvG3G4QOBshJor902ZNLxtkGicl/1rFW5dVdxOV+8dEWzYZr22mNSFFKwR3bDafiwIRVXHhkm0J8FfvLra+LaG26LKZMnxEvPObnNC9jZk47XpAtkP/rmh2NI7eD+zKFsBMpOYPzYUaU8be9/Z3sWO3u8zYZje+P7vlJq52945VnbN+AdAQI9IrCjdtuww/d/5tulHnymT90/XnTmia0CMrXbBimvBHpf4Kb0oFF2o3jPPSaWdu542/t1YI8EuirQst1m62fBV+/79Ldi9KjhpaCP42ZNbbXZm267u7TMR9/96ph+2P6t5ptAgMCuF7ji2psi6zXg3gcfi89+6A2lHSxZtrLUk/TeUyY17jB7n920apm025YiPhPoeYG22m3DXh1vGyS8EigPgacXL493/udFqYfZf4tZ0w9ulinH22YcPhAoG4EdtduGTDreNkhU7mvrR7UrtyxyXuYCa9dtiNomPYAMrqnvDWRNmi4RIFA+Amc995g45shDY/dJY1Mw1px4+Vs+HdnNqKbpou//Ov70l1vih1//YOyz525NZ3lPgEAfC3TmeLtuw8Z48we+FpN3Gxff/Mw7o7q6qo9zbfcEBrZAFsj18nOfU+qBdnDNoPj6d/5fvDfdSG6atNumGt4T6F2BOfPvi+/+9I/x1vNf0PiQguNt79aBvRHoqkBb7fbwQ/aNM085OvaZslssfHpZ6cGFP1zzz2abvv2uB+M/PvZf8aF0I8swa81ofCDQowL/emJRrFy9LrbV1cWq9JqlNWvrrxk37VE6O1deu775tWTttkerxsYJtCvQVrvNFna8bZfMDAJ9IrB+w6Z4+0e/GS84/YQ4Lz0Y2DI53rYU8ZlA3wt01G6zHDre9n097Yoc6FlrVyjaRqcEsu6sN2/Z2rjs5i1bSu9HpukSAQLlI/Dx95zfmJm3nH9uPPcl742/3bSgdBM5m3Hd3+dFdqLwrte/KPZLwzVJBAiUl0Bnjref/fqPY/3GTfGHH32+1ItPeZVAbggMPIFsSJdPvPc1jQU//qjD472fuiSynrQahoHRbht5vCHQqwL3PfR4vCsFbrzwzGdF054oHW97tRrsjECXBNprty2Dry745CXxu6tujHOfd3xp+1u2bou3fujrkfUE/9Kzn92lfVqYAIHuCbzzdedF9u8nv7omPvrF75d6vhs5ov6acfPryVtjRBrOtCFptw0SXgn0vkBb7TZ7GNDxtvfrwh4J7Ehg3p0PxMOPLowZhx0Qn/3Gj2NDuiacpW/96Hfx4nTOOyb1OJslx9sSg/8RKAuBjtrtsTMPc7wti5rqfib0rNV9Q1vopMCkCWPjsScXNS792JOLI5/LxYRxoxuneUOAQHkJDB86JIYNrY2NGzc3ZmzcmFHxjte+ML516e/i+psXNE73hgCB8hDozPH21JNmRXZC/46PXhQrVq4pj4zLBQECjQKTxo8pvd+0qf7hhuyDdtvI4w2BXhO47Y4H4jXvvjBeeMaz4pNNAiqzDDje9lo12BGBLgnsqN223NBuE8Y0+1s3l65RZTeen16yPD79tUtbLu4zAQK9ILB/eihw8+YtqVet9TExnRNn7fLxdA25IT2aeuCalNpuQ9JuGyS8Eug7gabttq1cON62pWIagd4TyB5EeNO/nR1jR48oPRA4csSw0s6Hp+Dn2jQCkuNt79WFPRHorEBH7bat7TjetqVS/tMEa5V/HfWbHJ6Wbgxf/dc5kf1RvSEFflz6y6vj2FmHxfBhQ/pNGRWEQKUL3HnvI6W2mQ17mD1J8YOfXxlLl6+KY2Ye2li0GVP3j7enYK03/tvzI3sSef5dDzXO84YAgd4R2LatLrIniLO0ddu2xvfZ584cb087aXZc9Nl3pWNwbbzlQ18r9ZaXrSsRINBzAjtqtz//7XWpF8v5kQ11mB13L/nRb0vDDO82cWxjhrTbRgpvCPSKwM3z7onXvueLccbJR8e/nffceOKpJfH4wsVpiKa1pf073vZKNdgJgS4JdNRuv3jxZXH/w4+Xzp+zv2OzIRCPmz21cR+DUm8g//6S58W3Lrwg/njtTXHR93/dOM8bAgR6RuCS1KvHP+bcWbpWvGjJivjeZVeUzoPHjhmZevoYEbOOOKh0nWrjps3xUOoV5Nobb0t/885uzIx220jhDYFeE9hRu80y4Xjba1VhRwQ6JbD3lEnxrje8qPHf6195Vmm981/6vJhx+AGOt51StBCB3hXoqN1muXG87d066am9GQaxp2Rtt5XAi886KW69/d44+/yPRC7NnTJ5Ynz7ixe0Ws4EAgT6TqBQLMb3fvrH+PIlPy9lYuiQwfGxC86PQw/cu/Q5l89ab336jze8OJYtXx1v+8g34uff+njpYlrDPK8ECPSsQHbz+Pa7HiztJAuazNKNv/vv0hNSHR1vsyePswNx1mved770vvi3d3wuDe90UXz/qx+IfF4cfwnT/wj0gMCO2m0W/PHFSy6LLKArS9kww1/75Nsbc6HdNlJ4Q6DXBO554LEoFArxqyuuL/1r2PErXnhKZMOGO942iHglUD4CHbXbuQvuLw2xluU4O7ae+Zyj482vPqexALlnzoVnTD0gvvapt8d/pCFQJ6be4F+ZAjYlAgR6RmDV6nXxtg9/I+rqCqUd7L/P5PjqJ97WuLOPp2tS7/jIN+PoM98axTQ1a7fnnn5C43zttpHCGwK9JtBRu3W87bWqsCMCOyWQK92hrT8fbtiA422DhFcC5SnQVrt1vC3PuupqrnLFlLq6kuUJdEdg7boNsW79xth90rjubMa6BAj0kEAWsJX16pF1O7/HbhOiqkrwRg9R2yyBHhVwvO1RXhsnsMsFsh4ts54th9QONkz4Lte1QQI9J+B423O2tkygJwSyodWWp2HAs6FMs4eTJAIE+l4g6zU6Ow+uHVzT7nnwU4uXx8jhQ43Q0PfVJQcESgIdtVvHW18UApUp4HhbmfUm1wNXwPG28utesFbl16ESECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQAQK6S6mASpJFAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQqX0CwVuXXoRIQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFABAoK1KqCSZJEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgcoXEKxV+XWoBAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIVICAYK0KqCRZJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg8gUEa1V+HSoBAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIVICBYqwIqSRYJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKh8AcFalV+HSkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQAUICNaqgEqSRQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEKl9AsFbl16ESECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQAQKCtSqgkmSRAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHKFxCsVfl1qAQECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECFSAgGCtCqgkWSRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoPIFBGtVfh0qAQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECFSAgWKsCKkkWCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCofIHqyi+CEhAgQIAAAQIECBAgQIAAAQIECFSKwJNPL40773ukzewePePQGDdmZJvzTCRAgAABAgQIECBAgAABAgQIECDQHwQEa/WHWlQGAgQIECBAgAABAgQIECBAgECFCMyZf1987Es/aDO33/ny++JZR09rc56JBAgQIECAAAECBAgQIECAAAECBPqDgGCt/lCLykCAAAECBAgQIECAAAECBAgQqDCBP/74wpgyeUKzXFdXVTX77AMBAgQIECBAgAABAgQIECBAgACB/iYgWKu/1ajyECBAgAABAgQIECBAgAABAgQqQGBQdXVk/1qmLVu3xTe/96v48/VzYuXqdXHIAXvF+9/28pgx9YDSor/9043xu6v+Hp/5wOvjh7+4Mh56dGG89mVnxGknzY65C+6PS370u3jwkSdjSG1NzDj8wHjPm14Se+w2PpatWB1fuviyuDX17LVx0+Y44tD94yPvelXsv8/kllnwmQABAgQIECBAgAABAgQIECBAgECPCeR7bMs2TIAAAQIECBAgQIAAAQIECBAgQKAdgXl3PRi3zLu38d9jTy4uLfnJr/wwfvabP8esIw6Od73+vFixak285t0XxqNPLCrNX7JsVSko67w3fDzufeCxmDB2VNTVFWLOgvvite/5Yjy1eFm87uVnxEvOPjnmp33c88CjsXnL1njVOz4X9zz4WLz+FWfGBW96aSxauiLe+qGvlea1k0WTCRAgQIAAAQIECBAgQIAAAQIECOxygdaPL+7yXdggAQIECBAgQIAAAQIECBAgQIAAgeYCH/nCd5tNOP+lp8f5L3leXP7nm+KVL3xu/Oe7X12af85px8dJL3p3/O8v/hSf/sDrStPy+Xx858vvjaOmH9K4jX9/1xdi2JDauOLHX4zq6vrhFF/7stNj4+Yt8Zsrb4iFi5bF7//38409ae25x8R4ywe/FvPufCCOmzW1cTveECBAgAABAgQIECBAgAABAgQIEOhJAcFaPalr2wQIECBAgAABAgQIECBAgAABAm0K/OySj8XkSeMb5w0bWhu3p56wisViHDvrsMbpY8eMjAP3mxIP/uvJxmmDBlU3C9TKZtz/8ONxwlHTGgO1smmDB9eU/t330OPZx3jfp79Ves3+t3XbttL7pxYvb5zmDQECBAgQIECAAAECBAgQIECAAIGeFhCs1dPCtk+AAAECBAgQIECAAAECBAgQINBKYPyYUTFx/Ohm07ds3Vr6nAVuNU1DawfH1q31wVVNpze8L6QAr2z+yOFDGyY1e920aUuMGTU83pmGVWyZDj1w75aTfCZAgAABAgQIECBAgAABAgQIECDQYwKCtXqM1oYJECBAgAABAgQIECBAgAABAgS6IrD3HruVFr/5tnvi2Jn1vWtt2Lg57rr/X3HqibPa3VQ+l4u9p+wWN95yR6tlCoVC7Lv37vGnv94Shx20T+rNa1yzZbKevCQCBAgQIECAAAECBAgQIECAAAECvSWQ760d2Q8BAgQIECBAgAABAgQIECBAgACBHQnsv8/kmD394PjVH6+PH//qmpiz4L744Of+J7Ztq4tXvOCUHa0aL3/Bc2LxspXxnk/8d9wy797Suhd88pK47u/z4kVnnhRDUu9cb//wN+L6mxfEQ48ujKv+emu87oIvxZz59+1wu2YSIECAAAECBAgQIECAAAECBAgQ2JUCetbalZq2RYAAAQIECBAgQIAAAQIECBAgsEOBfD63w/lf+s+3xAc++z/xpYsvKy1XO7gmPvaef4+jZhxS+pw60WozvTwFc61avS6+f9kV8ecbbists+9eu8eek88pDbf4va9+ID77jUtLAVsNG5h68L4xacLYho9eCRAgQIAAAQIECBAgQIAAAQIECPS4QC519a6v9x5ntgMCBAgQIECAAAECBAgQIECAAIGuCKxYuSZWrVkXe+0xKaqrqzq9aiFd6np68fJST1pjR49otd76DZti6fJVKYBrTAwdMrjVfBMIECBAgAABAgQIECBAgAABAgQI9KSAYK2e1LVtAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIPCOQJ0GAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECPS8gWKvnje2BAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECIVjLl4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK9ICBYqxeQ7YIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKCtXwHCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0AsCgrV6AdkuCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgIFjLd4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK9ICBYqxeQ7YIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKCtXwHCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0AsCgrV6AdkuCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgIFjLd4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK9ICBYqxeQ7YIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKCtXwHCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0AsCgrV6AdkuCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgIFjLd4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK9ICBYqxeQ7YIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKCtXwHCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0AsCgrV6AdkuCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgIFjLd4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK9ICBYqxeQ7YIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKCtXwHCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0AsCgrV6AdkuCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgIFjLd4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK9ICBYqxeQ7YIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKCtXwHCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0AsCgrV6AdkuCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgIFjLd4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK9ICBYqxeQ7YIAAQIE/n+7dkwCAADAMMy/67roFQWDsLMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAbGWDxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGAQEGsNyCYIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAg1vIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIDAJirQHZBAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBMRaPkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFBQKw1IJsgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQICAWMsHCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgMAiItQZkEwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBBr+QABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQGgQAYLHzz8s4ivQAAAABJRU5ErkJggg==", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import plotly.graph_objects as go\n", "\n", "\n", "fig = go.Figure()\n", "fig.add_trace(\n", " go.Scatter(\n", " x=df['force'],\n", " y=df['rpm'],\n", " mode='markers'\n", " )\n", ")\n", "fig.update_xaxes(title='Force')\n", "fig.update_yaxes(title='RPM')\n", "\n", "fig" ] }, { "cell_type": "code", "execution_count": 3, "id": "3e910407-13c5-4810-990f-f35c1fa85c06", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "x=%{x}
y=%{y}", "legendgroup": "", "line": { "color": "#636efa", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "", "orientation": "v", "showlegend": false, "type": "scatter", "x": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243 ], "xaxis": "x", "y": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 195, 352, 540, 720, 862, 975, 1065, 1132, 1162, 1185, 1215, 1230, 1252, 1260, 1267, 1260, 1267, 1290, 1320, 1350, 1350, 1245, 1162, 1102, 1035, 1012, 975, 960, 945, 930, 922, 907, 915, 900, 480, 510, 585, 652, 705, 735, 750, 787, 802, 810, 825, 817, 382, 1020, 1207, 1260, 1290, 1290, 1275, 1267, 1320, 1387, 1395, 1410, 1417, 1432, 1417, 1387, 1320, 1260, 1260, 1275, 1275, 1260, 1230, 1230, 1215, 1237, 1245, 1252, 1245, 1252, 1222, 1215, 1222, 1200, 1192, 1200, 1207, 1215, 1192, 1185, 1185, 1185, 1185, 1200, 1185, 1185, 1185, 1185, 1162, 1170, 1155, 1147, 1140, 1110, 1102, 1095, 1080, 1095, 1095, 1080, 1080, 1087, 1095, 1080, 1035, 1065, 1050, 1065, 1050, 1020, 1005, 997, 975, 975, 975, 982, 975, 960, 989, 1005, 989, 1005, 892, 780, 750, 720, 735, 960, 1072, 1110, 1125, 1132, 1132, 1125, 1125, 1155, 1170, 1177, 1170, 1185, 1177, 1170, 1162, 1170, 1162, 1170, 1170, 1155, 1170, 1170, 1170, 1170, 1170, 1170, 1170, 1140, 1147, 1162, 1155, 1155, 930, 240, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "yaxis": "y" } ], "layout": { "autosize": true, "legend": { "tracegroupgap": 0 }, "margin": { "t": 60 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ 0, 243 ], "title": { "text": "x" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ -79.55555555555556, 1511.5555555555557 ], "title": { "text": "y" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABH8AAAFoCAYAAADOwFcGAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAEf6ADAAQAAAABAAABaAAAAACIZLqEAABAAElEQVR4AezdB5xc1Xnw/+fObFfZXUm7Qh3RiwSoUSQQTSC66dXYTuLEjmO/MSaJY/tvYzvE+I1jv8axTWLsBEI1YDrYAgxCIIFQLyBAINSRtKsu7WrLzPzPc+/emS2zbeq9d37n85md2Sn3nvM9d3fuPHPOc6yYKUJBAAEEEEAAAQQQQAABBBBAAAEEEAikQCiQraJRCCCAAAIIIIAAAggggAACCCCAAAK2AMEfDgQEEEAAAQQQQAABBBBAAAEEEEAgwAIEfwLcuTQNAQQQQAABBBBAAAEEEEAAAQQQIPjDMYAAAggggAACCCCAAAIIIIAAAggEWIDgT4A7l6YhgAACCCCAAAIIIIAAAggggAACBH84BhBAAAEEEEAAAQQQQAABBBBAAIEACxD8CXDn0jQEEEAAAQQQQAABBBBAAAEEEECA4A/HAAIIIIAAAggggAACCCCAAAIIIBBgAYI/Ae5cmoYAAggggAACCCCAAAIIIIAAAggQ/OEYQAABBBBAAAEEEEAAAQQQQAABBAIsQPAnwJ1L0xBAAAEEEEAAAQQQQAABBBBAAAGCPxwDCCCAAAIIIIAAAggggAACCCCAQIAFCP4EuHNpGgIIIIAAAggggAACCCCAAAIIIEDwh2MAAQQQQAABBBBAAAEEEEAAAQQQCLAAwZ8Ady5NQwABBBBAAAEEEEAAAQQQQAABBAj+cAwggAACCCCAAAIIIIAAAggggAACARYg+BPgzqVpCCCAAAIIIIAAAggggAACCCCAAMEfjgEEEEAAAQQQQAABBBBAAAEEEEAgwAIEfwLcuTQNAQQQQAABBBBAAAEEEEAAAQQQIPjDMYAAAggggAACCCCAAAIIIIAAAggEWIDgT4A7l6YhgAACCCCAAAIIIIAAAggggAACBH84BhBAAAEEEEAAAQQQQAABBBBAAIEACxD8CXDn0jQEEEAAAQQQQAABBBBAAAEEEECA4A/HAAIIIIAAAggggAACCCCAAAIIIBBgAYI/Ae5cmoYAAggggAACCCCAAAIIIIAAAggQ/OEYQAABBBBAAAEEEEAAAQQQQAABBAIsQPAnwJ1L0xBAAAEEEEAAAQQQQAABBBBAAAGCPxwDCCCAAAIIIIAAAggggAACCCCAQIAFCP4EuHNpGgIIIIAAAggggAACCCCAAAIIIEDwh2MAAQQQQAABBBBAAAEEEEAAAQQQCLAAwZ8Ady5NQwABBBBAAAEEEEAAAQQQQAABBAj+cAwggAACCCCAAAIIIIAAAggggAACARYg+BPgzqVpCCCAAAIIIIAAAggggAACCCCAAMEfjgEEEEAAAQQQQAABBBBAAAEEEEAgwAIEfwLcuTQNAQQQQAABBBBAAAEEEEAAAQQQIPjDMYAAAggggAACCCCAAAIIIIAAAggEWIDgT4A7l6YhgAACCCCAAAIIIIAAAggggAACBH84BhBAAAEEEEAAAQQQQAABBBBAAIEACxD8CXDn0jQEEEAAAQQQQAABBBBAAAEEEECA4A/HAAIIIIAAAggggAACCCCAAAIIIBBgAYI/Ae5cmoYAAggggAACCCCAAAIIIIAAAggQ/OEYQAABBBBAAAEEEEAAAQQQQAABBAIsQPAnwJ1L0xBAAAEEEEAAAQQQQAABBBBAAAGCPxwDCCCAAAIIIIAAAggggAACCCCAQIAFCP4EuHNpGgIIIIAAAggggAACCCCAAAIIIEDwh2MAAQQQQAABBBBAAAEEEEAAAQQQCLAAwZ8Ady5NQwABBBBAAAEEEEAAAQQQQAABBAj+cAwggAACCCCAAAIIIIAAAggggAACARYg+BPgzqVpCCCAAAIIIIAAAggggAACCCCAAMEfjgEEEEAAAQQQQAABBBBAAAEEEEAgwAIEfwLcuTQNAQQQQAABBBBAAAEEEEAAAQQQIPjDMYAAAggggAACCCCAAAIIIIAAAggEWIDgT4A7l6YhgAACCCCAAAIIIIAAAggggAACBH84BhBAAAEEEEAAAQQQQAABBBBAAIEACxD8CXDn0jQEEEAAAQQQQAABBBBAAAEEEEAgcMGfltbWlHo1EonKlm31Eo1Gk77+QEOj7Kjfk/Qx7kQAAQQQQAABBBBAAAEEEEAAAQS8KlDk1YqlUq9X5y+Vb9zxa1n+ym87vPwHP71fHnvutQ73TTz+CHn0nu/Z9/3hxXnyr3c/KC3NLVJSUix33P4FueLC6fZjTea+b991r8yZu0gsc8+40cPlV3fdZl932CC/IIAAAggggAACCCCAAAIIIIAAAh4UCETwZ9fufXLTV/5FNn9aJ8VFXZsUk5hMn3qi/PNXb4l3QVlZiX27buce+f6/3yffu+1zctXFZ8nvn31Nvvtvv5OzTpso1ZWD5MkX5snCpWvkuft/JLXDquW2O34pd979gNz7k3+Ib4sbCCCAAAIIIIAAAggggAACCCCAgFcFAjHtq6pqkPzuZ/8kd37zr7p1HjigQo48fGT8MuqwYfZzX52/TKoGD5DrLj9HiorCctNV50t5WanMXbDcfvyleYtl9jnTZPzYETKgokw+f/1seXvxu3LgYGO3++IBBBBAAAEEEEAAAQQQQAABBBBAwCsCXYfJeKVm/ahHyLJk9IgaWbfh025fteK9j+X2H/xaqioHyqyzpsgZU060n7u9bpeMGVkbf51ua8zIGtm2Y1f88XOmnxJ/fOyo4RKNxURHDA0cUG7fv3UngaA4EDcQ6EagckCxtEZicvBQanm5utksdyMQSIEhg0qkoSkih5ojgWwfjUIgkwLDKktl38EWaW5Nnrcxk/tiWwj4XaC2qkx27W+yz8n83hbqX3gCI4c6n78Lr+WZaXEggj+9UUw4brw9aqespETe/XC9fPH2n8hd3/4bO6/P3v0HpbTUmQLmbkfz/uxvG9mz/0CDlLV7vNRsQ8s+c79bhleXuTe5RgCBbgQ0sKplYHlB/NvpRoG7EeibgP69lBSHJBYr7tsLeBYCBSwQClkyZHCJ+XspYASajkAfBcLm72XY4FKTFIOCAAKFJlAQn8KuvfTsDv162x2/kqf/9IYd/KkcNECaW1o6PN7U1CKDB1bY9w0y15r02S1Nzc32Tfdx/aV+b5P7MNcIINCNwKCKIomYQQwNTYz86YaIuxGIC1QNLJbGpqg0tTDyJ47CDQS6EdCRcvsbW6WFkT/dCHE3AgmBoSbws+dgszknI/yTUOGWXwQYdJFeTxVE8Kcz0WE11WZa1077bk3ivHHLjvhTdErXpq07THLnKvu+4TVDZMPmbfHHN2zeLvqNbM1Q53F9IBLln2cciBsIdCOg38jq3xd/L90AcTcC7QT4e2mHwU0EehHQs7CoORfj/aUXKB5GoE2AvxcOBQQKUyAQCZ+165pb9BsfZ0SB3m5tTXxb+uNfPiwffLzRfnz56o/k2ZcWyBlm9S8t582YLHv2HpDHn5trIuBReeSpP8uhpmY5Z/ok+/ELZk6ROa8tkvWbtklDY5Pc//gcOX3KCfF8P/aT+IEAAggggAACCCCAAAIIIIAAAgh4VMCKmeLRuvW5Wjvq98i51369w/OnnXys3Hf3t+z7rv3rO2TN2g32bcuM2rn43FPlX8zKYG4un8fM8u53/cdDdsCouLhIvtu27Lu+oMkEgr75r/8lr7yxVDRjyWiTHPqeH98mh485zN6e/iDhc5yCGwh0K0DC525peACBLgIkfO5Cwh0IdCtAwuduaXgAgS4CJHzuQsIdPhIg4XN6nRWI4E9fCPaZxM47d+8TncZVUV7a5SU6Umjr9noZOXyYveR75ydo4mdd3n3E8KGdHyL400WEOxDoKkDwp6sJ9yDQnQDBn+5kuB+BrgIEf7qacA8C3QkQ/OlOhvv9IEDwJ71eKpicP4NNYme9dFeKisKiy7h3VzTxs14oCCCAAAIIIIAAAggggAACCCCAgJ8EApPzx0/o1BUBBBBAAAEEEEAAAQQQQAABBBDIlQDBn1xJsx8EEEAAAQQQQAABBBBAAAEEEEAgDwIFM+0rD7bsEgEEEEAAAQRSEFj1riUL3gpJ4yFLZpwRlWlToilshZcggAACCCCAAAIIuAIEf1wJrhFAAAEEEEAgrwLvvmfJfBP02bxF19d0ynMvhOSttzUIFJMpkwkCuS5cI4AAAggggAAC/REg+NMfLZ6LAAIIIIAAAhkT2LXbko0bzWWTyKp3Q9LU5Gy6qkrsET/lZWKCQZZ8us2SZ563ZM0HllwyOypDhsQyVgc2hAACCCCAAAIIFIIAwZ9C6GXaiAACCCCAgIcEli0PyYpVlqz7JDHCR6s31AR1TpsWk9NPS4zwOWmiyPIVIXn6uZB8uNaS3btDcuvNUamqIgDkoS6lKggggAACCCDgcQGCPx7vIKqHAAIIIIBAUAQ04KPTuraZkTxuOf64mIwd41zGjE4e0Dnl5KhMODEqDzwclk/WW/LgoxoAikjlYHcrXCOAAAIIIIAAAgj0JEDwpycdHkMAAQQQQACBlAVaW8Ue3aMjfJavDElDg7OpmmExO4fP5EmJET697aTInLHccmPEDgBtMFPFHnokbAeABg3q7ZU8jgACCCCAAAIIIEDwh2MAAQQQQAABBDIq0BoReeT3YVn7UWKEj+6gtsZM6zo1lvLqXSUlJgB0U0QeNCOANm6y5NEnwvIXt0ZEA0MUBBBAAAEEEEAAge4FOF3q3oZHEEAAAQQQQCAFgbcXhuKBH53KdcR45zL+8OTTuvqzi7JSZwTQT/5fkWwyAaCFi0J2cuj+bIPnIoAAAggggAAChSZA8KfQepz2IoAAAgggkGWBxUtC9h6u/kxUNF9Ppkt5uci1V0Xk0cfDsnipLgOf6T2wPQQQQAABBBBAIFgCztlZsNpEaxBAAAEEEEAgTwKrVluya7fI8OGxrAR+3GadcHzMnka2c6clq9/tOL3MfQ7XCCCAAAIIIIAAAo4AwR+OBAQQQAABBBDImMCitlE/0yanP8Wrt0pNneLsY/FSTmd6s+JxBBBAAAEEEChsAaZ9FXb/03oEEECgg8AS8yH6Y7MyU/tSVRmTC2dlfupO+31wOxgCugrX+g2W6LSsqVOyf8xMM/t49bWQvaKY5v8ZY5aMpyCAAAIIIIAAAgh0FSD409WEexBAAIGCFHj+xZC8szjZCApLTpsWk0oTBKIg0JOAO+pHAz+hZIdSTy9O4bFw2AkyvbkgJItM4HLMGLPMGAUBBBBAAAEEEECgi0AOTs267JM7EEAAAQQ8JvDinxKBnymTYnL9NRH74lbzo3UdRwO593ONgCuwe7clK1c5x8m0ydkf9ePu1536tXyFJXv3cZy6LlwjgAACCCCAAALtBQj+tNfgNgIIIFCAAn+cE5K333HeDm65MSKfuTwiE06M2ZfLLnE+xH9M8KcAj4z+NVlX3dJy8kkxqarq32vTefaQ6phMnNCW+2cJwZ90LHktAggggAACCARXgOBPcPuWliGAAAK9Csx5OSRvLXTeCm6+ISLHHtNxateRRzi/E/zplbKgnxAxs63cKV+ahyfXxd2n1iHW8RDOdVXYHwIIIIAAAggg4EkBgj+e7BYqhQACCGRf4KVXQjL/Ledt4MbrInLcsV0/NQ8dEpOampg0NopoMl8KAskE5pucO4cOiR08HJuHpMuHj4vJEeNj0tAgsnARpzbJ+oj7EEAAAQQQQKCwBThDKuz+p/UIIFCgAq+8GhJNkqvl+msjcsLxXQM/Lg2jf1wJrpMJHDwo8vqbzrE0bWruR/24dXJXF3vrbU5tXBOuEUAAAQQQQAABV4AzJFeCawQQQKBABP5slsae1/Zh/bqrTX6fE7oP/CjJUUz9KpAjI7Vmzn0jJC0tIiccF5Njjur5WEptD317lR7Ho0bGZPce6WbVur5th2chgAACCCCAAAJBFCD4E8RepU0IIIBANwIa+HndfFjXcs1V0Xii3G6ebt+tI3902e5Nmy3RUR6U4Am0top8sNaS5StC8cu27ZZEe4nlbNtmycK2ZOFnz8zfqB+3R6af7lSY0T+uCNcIIIAAAggggIAjUAQEAggggEBhCDzzfEiWLHUCP1d/JiInT+zlk30bSzgsogGgtR9ZoomfT+rj6wpD1f+tbDD5nB58OCybt3TN6TRooMiMM6Iy3VySFR31o+W0aVEZcVjfjqdk28nUfRMnRM10Rks+NUGpxeZYn5rDJecz1Qa2gwACCCCAAAIIZEPAOWvLxpbZJgIIIICAJwTq6iy597/DduDHMp/vNbnzKSf374O6m/fno3W8bXiiUzNUCU3S/NAjicDPxBNj9rGhAT49VvYfEPmTWRHupz8vskeMaUJlt2gw8L01lhSZr5HOPit5cMh9bi6vE6N/ugazOtdj925LPjTtcC/bdbSTd5rSubr8jgACCCCAAAIIpCzAyJ+U6XghAgggkH8BnYZVUSH2B/VktdGlr3U59+ZmkcOGx+TKK6IyckT/Aj+6XTf4w5LvyZT9eZ8eEw89Gran8+monVtvjshAM9LHLddeJbLmfcteEW7jJkt0yqBeRo9yVtZy80adY6Z7tX+d+/p8XZ98khn985YlGshZujwkk0/pGs1ZskxXurOkvr5rgGjAAGe0k4540gAYBQEEEEAAAQQQCIIAwZ8g9CJtQACBghCImZjN+g2WveS6fhjXi36A12lZury2XgYNEjv57kazLLs+frBtpIaO5Ljy8og9SiMVrOG1MamuNsl0zUiJLVstO7FuKtvhNd4Q0Bw/D5oRPxvMcTLcBAVvuSl5AOd4k8T5+OMi8u57ZnTMWpMPaKVlTw9zp4gNMcfEzDO7Blfy3crpp8XkqWcteeGPIakdlgh2rltvycpVluwwo+HccrRJUu3+piOANKD60ish0bxBGgA643SCQK4V1wgggAACCCDgXwGCP/7tO2qOAAIFILB9h5NnZ53JtfPxJ5ZEIl0brfd9Yj7U6qVzqaoSmT0rIif2sqJX59cl+11H/yxe4tRHV1Wi+Ffg1bkhO5BYWxOTz94YlcGDeu5PPX5OPCEiV1wmss4ch+7l9FN7fl2+hCaZ0T46+kenPP7GTHnsXDSYOeMMneLWNXD1wYfOaCcNtOqUty2fWqI5sjTImo3SYgJxxT2cjelUOx3dR0EAAQQQQAABBNIR6OF0I53N8loEEEAAgXQEmppEnnsxbI9SaL8dnbo1/nBnlM/YsWakj5mmox8O3ZFA+/dbUlzS9vgYER2ZkamiS74vXiJ20ueZZ2Zqq2wn1wKaq+fNBU7uphuui0plZd+PEQ2A6EgZvXi9XHBeVObN75ijqrrSmcI4eVLXoI/bnmOPicmxx0Rk9buWPPaHsKxabUljY9ieFpfuNDAdcaWjrfTi/s3qfTrtzhm9J1Ji/n51ZJL7eKNJyH3l5VHpqc5u3blGAAEEEEAAAQS6EyD4050M9yOAAAJ5EtARPM8+H5adu5wKTDrFybFy5PiYya3S9UO3jgo47tiYfclmld28P1o/TRRcVpbNvbHtbAm4K3Sdf25UatpNicrW/vK1XedvIslQuT5WaIJJfn3YYRF54OGQfPSxZedH+uxN/d/eps3OqDx3tFSy3evqZHpZuCjZoyJPPxcSKxSTSf1M1J58a9yLAAIIIIAAAoUoQPCnEHudNiOAgGcFdESG5hvRoiN8rrg0KkOHdg345KMBpaVi8r/E7CTAq99jGe189EG6+1xqEh1vMrmgNH+Tl1boSrdd2Xr9MPO3d4uZFvfAw2GT88iy8yRdc2UiAKQjgboLgurInZf/HLJH+bSv30gzZXL8uJiMMTm6xplLeXli5J6+Rkf96bS0sWbkno4GWrbCktdeD8lTz4QlZEVFE1pTEEAAAQQQQACB/goQ/OmvGM9HAAEEsiCgHyx1JSX99l/LmdOjcuEs733I0ykxugKUJgCeOjkLEGwyqwKvv+EEFgn89J3ZyYukI4CcANBdP+l46pQsf9DbC0Py4pzElLNpU6JyhBm5pxcN9nQuh5tgkF6SlXPPjtnLz2vf/eHpkITMCKCJE5I/N9nruQ8BBBBAAAEEEFCBjmcwmCCAAAII5FRAp5PMfytk59HRHesoH52OMyEDCZqz0ZAJJ0TlGTMFRZd837PHkqoqPoRmwzkb29Tgwe49zmiSyWYqIaXvAs6KaBF5/MmQWQ3MCdDqqzUfjyZlf/IZS95aaMm0qTF7pM8KsyqaltNPjcolF6UfxNX/CTHTZfPeDJk6hOWdxTHRaZg6MmjkiJhsNivw6YguN0+QrlJ23jnp79duBD8QQAABBBBAIBACBH8C0Y00AgEE/CigH8Z1tI8WzdujH9imm2Wls7WqUCaMSkrEDkytMslwV5vRP2dOJ4iQCddsb2P/AUsY9ZOesiZl/j9fSUz5cre2ZGnIBHCdnD3PPu8EfYqLxUzZjJgpWpn7+5hlEljrqKE5ZgUyN2m0W4fO13PnhWSrWaVM6zB4cOdHe/99506Tp8isdqb5vdabi04TvPKKqOg0OAoCCCCAAAII+FPAipniz6p7p9Zbd5qv/igIINCjQOWAYmmNxOTgIbO0DUUefTws761xPijqt/oa+CnySThe66311+Xev/TFrh+G6d70BYYMKpGGpogcas6M76LFIbN6XMgs1x6TG67NzDbTb2WwtrBoiQaBQmYFPpOr67LsJdM+cMBZMcwe5WOSSW/ZYsmY0c4oIL1uanamkO7bJzJggBOE0lxdPZV9+9xgj9jBnl27E6Ob3NdpbqMrL4/ICcf3vC33+f251jPRdFZSG1ZZKvsOtkhzK6Od+uPOcwtToLaqTHbtb7LPyQpTgFb7WWDk0CRzp/3coBzX3ScfNXKswu4QQACBLAm0tIg88ljYXj1IP5jddH3EnrqRpd1lZbP64U9HIGwxU000R5GOiKB4W2D+284Is2lT+XCcrZ7SvD56yXYZOFDsIJ4G8rREzS5DifRC5p6YHH1kVJ59ISzvf2DZ/280UKurl2nOIf171elqOqpHR/foyB6duta+6P8mTUp9uEk6P3pUTOabRPQ62k+DvueeHbUv7Z+f6u29JkClAbNlJhH5DJPnTIPgOmqKggACCCCAAAKZFyD4k3lTtogAAggkFTjY4AR+Nm50plHcdH1UDhvuz8CJ5v7RkQ6a+JngT9Lu9sydrWaw3a5dTnX0Az0lWAIdAz9O2zRAdPMNEXuqn04t1UCtXrorOp1TVxfUpNN6rXmE2pfrrolIba0zTVVXHltgAjbTTaBGcw6NHRuT4n6eTe7fr7nOLFnQFpTUfb06N2TyJpkgkNmuXrw8/bW9DbcRQAABBBDwi0A/36790izqiQACCHhLQJMjP/KYs5qXrg500w1RGWLyaPi16KiDRUvE5P0JieYioXhXoN7kb9FSMyyW1tQa77aQmnUnoKu6nWpGe639KCTrPhFZtz5kErU7U6w0yOOO7hlnAji9Fd2W/u96+tmwNJiRQxoEcotOWa2s7H0b+vxIRJPFu68Ue+UyDYLrSCRNgP/KqyH7osnv+1rCIW2nJadO6+sreB4CCCQT0Fx+7ywKSbmZ5nmESSqvowX1vYOCAALBECD4E4x+pBUIIOBhgR1mSoVO9dppRl9oTg6d6qXfzPu56AmhBq927XKSwuoHSYo3BerrnXoNG+bN+lGr7AroFM2TJkbNRfcTlUOHxJ5alcrImuOOjck3vt4qH31kyQZdXcyMYtQRRTq6TJNE96foioY6wmeUmVam5awZYoJUzuqH6z6x+rm9mDz/R8usQhg2iakj9rTU/tSF5yIQdIEW8zeqf6+aKywWiUpLa0hGj3ZG7w0aJLLmfedvTx93yxozbVSLvte7owL1urLSfQbXCCDgNwGCP37rMeqLAAK+EthskrE+8vuw7DdJWnVpZg386BSLIBQd/fPGfMue+kXwx7s9WlfvnMCzUpN3+yiXNdPEzemUEpOTR/N+uYmfNY/ZAbOanOYe6msZaJJil5Z2ffbRR5l8RUdFpMFMkW1sTHwI7frMjvfUbS+WZ/8UFf2wuv23RXYASD+kai4jDSTpRY//00+N8sG1Ix2/BVxg+cqQrF1r2Tm7Ek3VP1b9+won7mq7pYGdyac4fyf23846SzQBvF6WLneepCOB9O/LvWjwSMtekzheX6MBJP1/MMKM6NMvimrNiEEt+ne9TnONmec0HrJEk9K7RZ9zlDlHcv+vuPfrta6oqK/bu7f9vZm/fewxMROE7sc/ssxXgS0ikHUBi9W+0jdmta/0DdlC8AUKcbUvPQnSET9NTSK62o4GfoJUPjVLSd9zb9hepv6f/4FV3DLZt5lc7evxJ8OyarUlV30mIpNOZoRWJvuJbXlDQFf72rilRR57yvnw2VOtpp+uOYViMmgQfws9OfGYvwVWrtLVB51FGdyWaPJ2zdNVO7RIDjREZP1GMxrIBGqam8UejXymGYmnubw6l63mvV6nZa7XBPHmouc07YsGlCPm9EYDwcmKjnTWVQr7UnQKqo4I1FGGS5c7bair63sguC/76Ok5UydH7dUae3qOPrbM1G3bDpHaGrFNmRrXm1jmHme1r/QsGfmTnh+vRgABBJIKuKvsxMzni5MnxuSaq4IV+NFGjzBJYfWbPz0ZXLYiZAILXU8ak+JwZ04F3GlfNUNzult2hkBOBaqqRL5wa0T+OMdJHK07H2xGJIw3Iw+qTD6iejMC7t01TpLpBQtFjj06JidNiNr/w9yRCzmtMDtDIAsCOv3ymedD9vuybl5HvJ06NSaTJ0Xjo45rq0JmqfeW+FLvmoBdR+NZ3cRYNAG8Xmac4VR40+ZEIEjf/3UqqRYd1awjfTTApNvatt0Z5bNvv/O43qePH2GmiQ83o4Laj0LUKZ96HrHBTE3bsLHjiCR9rk4TzeYI44/NCKfX3wjJYjPKyDLpzC6/JPn5zMJ3NCBlcqd1GoU0yAS4BgzoOiXu/HP9u7CH02v8DJoAwZ+g9SjtQQCBvAusXGXJE085Jy+69PPllyY/ich7RTNQgZNPcoI/CxdZJviTgQ2yiYwLuAmfh5G0M+O2bNB7AhfPjpoPujFn2olZ1r590fxE+sFttVm2/oMP9eL8n9ZE1u4UFr3Wpe4pCPhNQEfxPPhwWA6ZkTlDhog9gkbPQXor/R0Fp7kL9aJ5urTsMCNzNLDT3egXHbkTMn9qlYNjosnhkxUNGGmgRP8+9aIjhWprNOAUk0lmGlq2i+5fR0Y9+EhYFi0OSci059KLo/b/EXV9zwSOP1xrgma7nZqMGukEenS1Rc2lpAGu/Wb667btHWt63DGWb1d17dgSfguKANO+MtCTTPvKACKbCLxAoUz70m+NnjXfumnRocuzL8j+SUu+D56f/aLIXr1Hl5bWodqU9AUyNe1rt8nT8P/+I2yPgPiH25ial37PsAUvCui0r30HW6S5tW//bzUPlo7OdKexdJ6uMsIEjc6cHrVXIvNie6kTAp0FNL/gAybw02hW4jvJjDa+tofRxrVVZWbkT1N85E/nbeX7d80XpAElXQUw1+VDkx9JA0Bu0eBO+3xmGvTRc7sJJ3asm464UvuDJq+RlrnzQnYy/JlnRlkR1SHJ2E+mfaVH2U38Nb2N8moEEECgEAV0xI8b+DlnZlTOO6dvH0T8bnXatKjMeTkkC83ysMcdG7zpbX7un/qdTu0Z9ePnXqTumRbQEQp6cUcu6FQTNxCk159us0RzZa37JCafuZz/aZn2Z3vJBTQoqfl1NIjQPkeOjuKprnKmUyVbpU9HtD1kAhb6uokmKNFT4Cf5nr11rwZc8hH4UYVjzHTQW26MyEOPOgEgO3G1CQbryCBNRt3d1LOhZnpd+3KoKSZ/MDnI9AsYCgJeEiD446XeoC4IIOBbAV0Jw53qdeGsqP2tsW8b08+Kn2qCP6+bb7l0zrx+cNJpExRvCMRX+mLKlzc6hFp4UkCTzOrl7LNEYubf19smr8dLr4RkyTIzXcV8Eg3y1F1PdkgBVUpHmmjyYJ1apKuC9lY0CKE5qipNHist+80KW6vMNEYtugLnddcQrLQx0vihq3599W8jJnDjJHMuL+//xjRYp2X3nv6/llcgkE0Bgj/Z1GXbCCBQMAKLlzgnX3rSoNMFCqkUm3cSDQDNe9MZ/XP4OE4+vdL/8ZE/JHv2SpdQD48LaO6SM06L2iODdBrNoiUmAay577JuEsB6vDlUz6MCy01yY12Na/sO59xBq6kJyseaIOSAipi9+pZbdR2JpgmGt5oRPhokcop77fymK4recC3vva5Zuteab0hX8kq1JII/Hfsp1e3xOgQyJUDwJ1OSbAcBBApWQJc41Vw/Ws6aUViBH7fTdeqXBn/efc+czJoVPnR1Dkr+BXSFIy3dJeLMfw2pAQLeFDjqSGf6h+b/eMckgNUVjq68IiqaD4iCQKoCugLWk8+YZcJNQEeLBhkmTojZo3Z0Za6eii6xrsEfXV1LV+hyy5AhMfLtuRgeudbRWcXFJgfQQRHtt9JSj1SMahS8AMGfgj8EAEAAgXQF9JthPRnTueA6JLsQi57onDo1an9I0pW/rrisMB281vdu8GfYMK/VjPog4H2B9vk/dPTFPb8J2yuB6dTW8eai17VmpTAKAn0RaJ9MWPOw6UpWU8wS7H0tGkA4+ij3eHOv+/pqnpdrAR39o4mrd+/JT/LqXLeX/flDgOCPP/qJWiKAgIcF3ClffVlS1cPNSLtqp02LmeCPMwrq7JlmGVSzrCslfwINZtWRA+ZbR/3AQF/krx/Ys78FdCrv7X8fkVfnhuQTk9Nsj8nhoSMc9aJl8GCxg0ATToh2O/pCv/mvN6sBaQDJLToaT0d6pLKsvP5d79pl2a8dakZ9ULwvsHevJU8/5yQR1mNKkwpTgi1QXa2rlpm8PyZ30GHDg91WWucfAYI//ukraooAAh4UWPO+ZX+zoyfgnZf+9GB1s1qlmrbh66tWW7LwHUsunMWHkqyC97LxeLLnXqYS9LIZHkag4AU0ue5Vn3E+rGsQp/3KYPv2iehKjytXhe1AkC4DrTmDtDQ3i8nrorldQvbtZJD6fL0MHJjsUec+DeSu1xXJ1puLuXanDOmjxx8bk+nm9ZqwmuJdgaefC9kreB1n+uvmGwj8eLenMlczJ++PM/LHpJLP3IbZEgJpCBD8SQOPlyKAAAKLzZQvLVOn8MauDpr7Z9VqkyPDLPt+tlnuvrRE76XkQ0A/pGphylc+9NlnUAV0tI5epk52WqjTOnQ6z5Klluw0o3H+OCckC94OiS4R3WKCP4fMqB8tZWVmNSazVLRlOe8VH6wNmbwtTnDorYUhe4nuo4+OiruU98GDlhndY4I+ZrSRLv/dvhSZs/fWVueeNR9YsuaDsL0M9UUXRKWqbZWh9s/ndn4F/vSSsxpmdXVMrrycwE9+eyN3e6+ucvbFil+5M2dPvQsQ/OndiGcggAACSQW2mJU31n5s2Un9Cn3KlwukOY80J8Hajyw7AFSoCbBdj3xe19c7eyfZcz57gX0HXcBZFUhXeRR5b41lj/LR5NBu0f+HOrLniPGdvyCIyuYtzvN1CtkKM3pohRk9lKyY1ebtqWWaY8i96PN0RJA7skj3/eHasL1E9RATZKB4Q0CXcddgoJYrL49KRYU36kUtsi+gwT4tu3cn/h9kf6/sAYGeBQj+9OzDowgggEC3AvFRP5OjUsIIl7iTjv5Z+1FYFprRPwR/4iw5vxEf+cO0r5zbs8PCFDjBjOw54fiIrH43JBs2imhuF101rLsyepSzPLeu4KSXLSYY5BYdwaOrBbnBHg0AdS4aSLjgfDPN7PSoSUZdZI8kmvNySG66vuvoEl0qXEcTjRqZvD46kkjz0gzl/0Vn5pR/V9Nnnnc67pKLoqKLQlAKR6CqbeSP5gmjIOAVAYI/XukJ6oEAAr4S0NW9lixzTtSZ8tWx63SFnNGjY7LZfPutK6ExKqqjT65+Y6WvXEmzHwQ6Ckw4MWpywHW8r6ffdMRkOitFDhwg8rd/3Sr/cU+RaB66xUtDZlpaYhUpzf/1wMNhO1n1iSc4I5E08KQlYuJE7uihxkaxRyjpSKXEqlI91ZzHehL4eJ1lT//TKX+nn5roj55ew2PBEXBy/jDyJzg9GoyWEPwJRj/SCgQQyLHAmvedb/P0mzym1XTF19E/mzdr7h/LBH+6Ps492RXQD3Q7Tb4QLZqfhIIAAsEW0ITRsy+IyNPPhkVH/xxzVNROQL3T5P566JGQHfhRAWelsrBMnBATzR201uQr0tXD3LLuE0vWfRK2RyydOT3ZdDX3mVz3JvCJSdCtRd8PKYUnoCtt6mp+B83fl+b3GjSo8AxosfcEkgwi9V4lqRECCCDgNQFNsqllgvkWldJV4OSJTlLU7TssewpE12dwTzYF4it9meWkk00Xyea+2TYCCORHYPIpMdGRPbq0/J9eDssuk2vkwUdD9rVOP/vH21plupkipkVXZVy23An86JcYn70pInd8p1VmnRu1k1N/ZPLZ3fdAWN6Yz0eFVHvTDf6M75LvKdUt8jq/CcRH/+xxzhn9Vn/qGzwBRv4Er09pEQIIZFlAl+99vy34c9yxfKPXHfdp02Lywp/Msu9m9E9/pkB0tz3u77uAm+x52NC+v4ZnIoCA/wVmmxW/1prEz6vf1cC7k0D6yCNicsuNEXslsYsu1KXoY2aqlyWfbrPsZNS6/LhbZp4VldPNUvXPvxiW5SstefnPIbNCmZiE1rzXuUZ9ud5/QGxfHV013iTqphSmQHW1mMTuztSvdKZ2FqYerc6GQODC+S3u2pdJtLbX75aGxrY1Nzs9HolEZcu2ejM3N/mb24GGRtlRT8auTmz8ikBBCqz5wPnXqau3MIy3+0PgVDPUXXNRbNhomSBQ4N5uum+4Bx5xkz0zJdEDnUEVEMihQFVlzEz/SpzL6qgeN/DjVqPSPEcTEP/VFyLSPvDjPq4LGFx9ZUQuu8TZzkuvJFascp/Ddc8C8VE/xl+DZ5TCFEiM/CnM9tNq7wkE6mz81flLZdpFX+6ivG7DVrn4lm/KrOu+Iadd8mX55p3/Je2DRH94cZ5MM/dfdNM/yrSLvyzPvrQgvo2m5ha5/Qe/ltMv/Yqcf91tctmt/ywbNm+PP84NBBAoPIH3TUJNLclOmgtPo/sW6wnvtVc7q84sfCckTzwZlh7i891viEf6LUCy536T8QIEAiMwbWrUXmls3Fgn8KOjT1Ipp5rtaJBIy59eCslbCwP1sSEVkj6/5pP1jhUrfPWZLJBP1JE/WnYz7cuB4GfeBQLxX3zX7n0y2wRuvvadXyQF/eHP7pcjxo2QhS/+pzz53/8i8xaulGfmzLefW7dzj3z/3++Tb331Zln28m/lG1+6Xr77b7+T3XtNZi5Tnnxhnixcukaeu/9H8vYL98jIw4bJnXc/YD/GDwQQKDyBFrN0q5vv53imfPV6AOjoqBuujYh+k7zS5Jj4r9+FZctWvgbtFS7NJ+iUAy0ke3Yc+IlAoQlcdnHEzuOj/3vTKbpK1cWznQDQH+c4QXx3ZGE62w36a9uP/Al6W2lf9wLxkT+7u38OjyCQS4FABH+qqgbJ7372T3LnN/+qi50GcRav/FA+f91sqSgvlaPHj5ZZZ02Rl19fbD/31fnLpGrwALnu8nPMqgdhuemq86W8rFTmLlhuP/7SvMUy+5xpMn7sCBlQUSafv362vL34XbMyglkPk4IAAgUnoKN+dHbo4WYOf2VlwTU/pQZrAtIvfTEiY8zy79u3W/IbEwDavIUAUEqYfXyRrvCjZTCri/RRjKchECwBfX/S1YYyUc4wOYCuvcoJAGkQ/xe/CstzL5hE0ru893881kt6na2fWvby9plw6W4bO43LLrPaYkWFyKiRvVSou41wfyAEqqucZjDyJxDdGYhGBCL4EzJzC0aPqJGh1V0/ie0weX5i5p1g3Ojh8Q7T29vrdtu/b6/bJWNG1sYf022NGVkj23Y4a+Tq42PbvXbsqOESNdvTEUMUBBAoPIH32/L9MOWrf32vuWf++i8jcvRRMfM/WczSw2HZbVaioWRHwMxYtktpKR88siPMVhEoLIGTJkbla1+JyORJzv+URUtC8vNfhuV/HwrLmwtCokGVfBbd/6OPh+Xff15kFhno+vFmj5l28+zzIfnPe8Py8brs1pVRP/k8Ery17+pqJ+fT3r2S9aCjt1pObbwqkOIsYK82p2u99u1vsO8sLU2Mey0tKZb9B5379+4/aL4ZSTymTy6xH3dG9uw/0CBl7R4vbRs/u8/c75ZhlRn6asXdINcIBFCgKGSJnjKWlzqrj/ixiSYvvLz/oZPDZvrUYhnWNd7sx2bltM63/a3Ib+6LyvJVMfPNcZF84++6nqTntEIe3VlR2JKicEgGlqf2Nt3c7BynI2tKWerdo31MtTInUGz+VioHFtuB5cxtlS11FtD3vOOPFNk6KyavzI3J24tiokvC60VL5WCRKy8NyWlTsxtcaV+vnea72jl/jsqbbycC3S/8MSTLl4dl9vlmpckTLPvxOX9OPL7t0yKZPjV77z1bt+goqZhMPD5szhNS+x/evo2Zvh0252PVA0vsc7JMb5vtdRUYOiQi9TvN/ZFSGTak6+Pcg0AuBbz3HynDrR88yIy5NEUTN7tFbw8a4NxfOWiANLckHrOf29Qigwc6jw8y1x1fa9Z4NsV9XG/vO9jx9XofBQEEOgroh9hINCaNTc6H0o6P+uO3VWbp3JYWS8aNNUHishbzt++PenutlldeYT48bAvJR+tict8jrXL1FYmTcq/VNV/1GVxRLIdaIub9yZlq0Z96aF6qaDRkpjKLHGjk/ak/djzXnwKV5oNsw6GIWcyj/38v/mxxfms90EwnvfJykQtniaz9yAR/1okdANptBsXf/0hUVrwbk6vM//V2351mpcJLllny+FOJQNOMM2JmFoDIO0ss2fJpTP77wY7vLQMHmv+JJh/a+x/Gsnru/v5aJ7A0alSrJ88TqgeVyIFDrWYkSkefrHQSG5WqqpAd/Nm0pVXKKzBP95Bg0EV6goEP/tQOqzZLLFqy0azQNdzc1rJ+0zYZXuPc1sc3btkRV9QpXZu27pDaYc4kzeE1Q8zqXtvij+tKXzo1rGZo2yRO80gzJxtxH24g0J2ABn5azYmGn/9eVr/njFo69pior9vRXR/l6v6QYbzSfDC497/D8s5iS4YOickZp/Ohrb2/vhel+vfSYA9MDdlJtv3899beg9sI9CSg0/s18MPx3pNS5h8rKjYjgY53Lrr1xUtD9qpgy1dasmmLyBWXRqW31a50GvDGTeY83Vzq6i17WfQRw2My1qxUNnJE9x+UX3k1JPPedAI/J0+MycyzoqLTi7VMnWoCQGbq17w3Q7LPrN+i041nnhm188798EdFsnmrWX1pb1QGDLCfntEfOv1MA0ya66WySo/JjG4+IxtTc/170fcYSvYFnPyQIdmxMyaHj+dcJ/vi7KEngcAEf5rNV53u8u16WwM0msC5unKQTDnpGLn/8Tky4bjxsmVbvbzyxhL5hy/fYLucN2Oy/OvdD8rjz82Vqy+ZKY8+86ocamqWc6ZPsh+/YOYU+fV9z8it11xoAkLV9nZOn3KCDBxQ3pMrjyGAQMAE9GQpscoXJ0zpdu/oUTETAIrKU8+E5I9mCWE9QZ99ASdF6brq65ubnQ9E6a7yk4m6sA0EECgcgamTo/ZiCJpbZ/0GS/7nf8NmsRUTBKlM/p65d69lzrl1pGJHo2Xi/A/ThNXTpkRFFw1onzj5pT+H5M35zuiayy6Jii5J37mcOi0qU81rd5nccu1XPdRglOb8+cTUb4LZbqZLIt9P1zplel9szx8CbtLnPWZkHAWBfAsEIvizo36PnHvt1+OWky74okw7+Vi57+5v2fd997bPyd996+dy6sVftue3XnzuqXLF7Bn2YzrC57tfv1V+9IsHRZeELy4uku/f/gUZYlYQ03KNCQi9s2yNXPa5b9lvRaNNcuh7fnyb/Rg/EECgcAT0ZLHZzPocXmuGlQ/N/Alj4UgmWjrp5KgcNN+Q6on8/LdC8p5ZSU2H7Sc7kU+8ilu9CehxqqWkmOPUkeAnAgjkSkADLX/5+YjMedn5v95gUmg2NDrBnO7qcJiO9BkTk9pa5xlbtupIIBFdtVCTSb+5QOQkM7pnxhlRWbnKst8v9JnXXh2RkyZ0/38uZOJD7QM/+pp48Gd9loM/43VvFATMKDCT9FkLi1xwNHhBIBDBHw3gvDv3vm49jzp8lMx55CeydftOO1dP51E7119xrj3qZ+v2ehk5fJg9YsjdmCaD/vkPvyaa+FmXdx8xfKj7ENcIIFBAAvotphYdPk7JnMCZM6L2iZEGf3T59+dftOStt00QaHpM9FtkSv8F4sGfjmsZ9H9DvAIBBBBIUUBHcupULF1lq7uieckGDYxJWVnyZ+iS6To1+K23Q3bQZ+UqZ+q1Pvv6ayIy4cT+vx+709DcETrJ95z6ve52x4/j/St1xWC90h35ozmxKAjkWyAQwZ++Io7sIXCjU8R0GffuiiZ+1gsFAQQKUyB+QmeGjFMyK6BD+k88ISKrVjvf6GrOhGefTwSBJp/CSXR/xN31DZj21R81nosAApkWKDdBnfLDUn/P1HxwF19ocsKdFjOjfSxZ+I4z1evG6yJywvGpbXfMaCfYVG/yC+02ganqqtS2k8xqR50uCmECWmbywGCz8hkFARVwjzFG/nA8eEGgoII/XgCnDggg4D+BQ4dENm12vr10vzX0Xyu8X+OJZvj+xAkRWbFSpwtYsm27JU8/mwgCnXISQaC+9CIjf/qixHMQQMAvAlUmZ9ClFzlBIP3/ptPE0in6Pr7GTDPWL3WqT0lvW+3rocvOaxmRRsDL2QI/gySgicU1f1WjOZdsNNMgy0kbG6Tu9V1bnBC676pNhRFAAIHcCbQf9aPD1CnZFTjZBHm+8qWIWSo4KrU1Mdm+w5Innw7JPfeGZeVq3rZ60yf405sQjyOAgB8FhpjcKekGfrTd7pc47nt7pizckR3uSI9MbZft+F/APSZ0tBkFgXwK8DEmn/rsGwEEfCHgniC6J4y+qHQAKjnJTPeadIrIErN8sI4E+tRMB3viSUveMMv76lQxXallWNvSvgFobsaakFjtK3PfaGescmwIAQQQyLOA+17uvrdnqjruak7V1ZnaItsJioAeE9u2a9JnkZEjgtIq2uFHAYI/fuw16owAAjkVcE8QDx/Hh+mcwrftbIpJ/DxlspjEn04QSEcC6eXVuSJDhogcOT4qk83Q/VFm+XiKLvXuKJQUo4EAAggg0FlAV+3UnDz79on9XqK/Z6K4ozrcUR6Z2CbbCIbAgAo9xqy2le8yc7wFQ4ZW5FqA4E+uxdkfAgj4SsA9OSw2H6QJ/uS363QJ+FOnirz/gSWr3g3Juk8s2WVyLOzaFZJFS5yV2HQp4CPGJ06sdpgg0afbLBloVpQ58ojE/fltSXb33uQGf1jtK7vQbB0BBHwroKN/Vqx08v5kLPhjRnVoYeSP48DPhIDm/dFy8KBzzU8E8iVA8Cdf8uwXAQR8IfBJ2xLv7jBxX1Q64JU87tiYHHdsxG6lLg+/fIUlK1aFZO1HlrmE7algVZUi9Tsts8xwAkNzRcw4IyaaUyjIRVeb0cJqX44DPxFAAIHOAu2DP6ef2vnR1H5n5E9qboXwKvf92H1/LoQ200ZvChD88Wa/UCsEEPCIgDvli+CPRzqkUzVGm6leerlgVtTkBQrJAnPRJXzr650n6pK7pSUxOdjgrB72h6fN6mELLTlzRtTOGdRpc4H4NT7ti5E/gehPGoEAApkXGN82jdt9j093D/v3O8u8D6hwVnZKd3u8PlgCOnpcS3PblzPOb/xEIPcCBH9yb84eEUDARwLuiSHBH293WqkJdJx3dlSmnxY108JCZl69M01v5IjEVK/Fmjh6QUi2msTRjz0RluO+3SpBXL2tqdlZTaTEBL0oCCCAAAJdBarNymG6YIB+WbBpsyVjRqf3/3J32yhT3S4Fgc4C8ZE/bdOyOz/O7wjkSoA1c3MlzX4QQMB3AjptSJdu1bna7YMIvmtIAVW4rEzklJNNEOj0aJc+m2oSR//9V1vjGg0N8ZuBusHIn0B1J41BAIEsCWRy9E9iyleWKstmfS3gLsDQ3MJS777uyABUnuBPADqRJiCAQHYE1q933qQZ9ZMd33xt1U3u2XgomCdh8eAPq33l6xBjvwgg4AMB973dHeGbTpV1CW8tVYz8cSD42UGguNgZEUbOnw4s/JIHAYI/eUBnlwgg4A8B94TQPUH0R62pZW8C5eXOMxrN1LAgFjengDvMPIhtpE0IIIBAugLue7u+10fTXAeAkT/p9kawX+++H7tfzgS7tbTOywIEf7zcO9QNAQTyKhBf6astMWReK8POMyYQ+OAPS71n7FhhQwggEFwBd0q3Bn7cL3tSba078qe6ipw/qRoG+XVuwmdG/gS5l/3RNoI//ugnaokAAjkW2LbdkgMHRHS1KE0KSQmOQHmZ058NjQGf9sVqX8E5aGkJAghkRaD96J90dhAf+VOdzlZ4bVAF4jl/SPgc1C72TbsI/vimq6goAgjkUmDzFicwcDijfnLJnpN9BX/kj3PsstpXTg4ndoIAAj4WyETwJxIR2bvXQWDkj48PhixWvbjty5gWEj5nUZlN90WA4E9flHgOAggUnMDWrU6TR49k1E/QOj/4wR+nx9xvGoPWf7QHAQQQyJSAG/zR5d4PHUptq4lRPzGxgjmgNDUYXhUXKGlL+Ozm5Is/wA0EcixA8CfH4OwOAQT8IbD1U+cMbiTBH390WD9qGeTgT8zEKu2cAubwdRNM9oOGpyKAAAIFJaC5WNwRvqnm/dm9xyGrriooOhrbDwE35w8Jn/uBxlOzIkDwJyusbBQBBPws0NoqQvDHzz3Yc93Ly53RXH5a6l2DOn0p7oklo376osVzEEAAARF39E+qwZ89u50viwj+cDR1J+B+GUPC5+6EuD9XAkW52hH7QQABBPwi4AZ+RhwWk2L+S/ql2/pcTz+N/NFA5Py3QvZFpxMcMT7mXA6PydChXSNCzW35BEpJ9tzn44EnIoBAYQto8Oe1182KXxucIE5/NeIjf6q7/k/u77Z4fnAFdPSPBn906hdf0AS3n73eMj7WeL2HqB8CCORcYOtW5wRw5Iic75od5kCgoszZSWNjDnaW4i506eHX5om8/maRNDQkNvLue5boRcuIETH52782mUbbFXfkj5tcst1D3EQAAQQQSCKg0770g/l2s8rnvv0ig80qn/0p8Zw/TPvqD1vBPVdH/2jwp8Ws+EXwp+C63zMNJvjjma6gIggg4BWBLeT78UpXZKUeiZE/qX3Lm5VKmY3u3GXJuk/MZZ0J8Kwx0R9x6nfkETGZfkZUhpolhO3H11uy+l1LPjXHqQaJQu0mcLvBH1b6ylYvsV0EEAiigI7++XCtJTr16+SJ/RvBs3u3I1LNyJ8gHhoZa5MGfA6arekI3QHSv2MsY5VgQwUvQPCn4A8BABBAoLOAu9LXKJI9d6YJxO/xnD8eGfmzZGlIVplgjgZ22pdTThKZcGJEjjk6cZI4ZEhMpk7RIJAzIqjRrE4zoCLxqkTwJ3EftxBAAAEEehZIK/izx/nfzTLvPRsX+qPF9opflj3yp9AtaH/+BAj+5M+ePSOAgAcFdKnXunpLwmGRkWZaDSV4AqWlzmiZJjP0OmJmTWlf56MsXR6SBW9ZsqPO+eBQYYI4bk6fyROKpGJgRA41Jz8Gy83UNZ0OdqjRfINYkXiOG/wpNd8wUhBAAAEE+iaQatJnnT6sF82zNmBA3/bFswpTwE36zHLvhdn/Xmk1wR+v9AT1QAABTwhscfP9MOrHE/2RrUro1K+DZvy1nrQPHJitvSTf7t69ljz2h5Bs2uwEU15XywAANEdJREFUfYbXxmTG9JiccpJO9XLKEJNzoqHJ/a3rtTN6yRId+dO+uMEf9ySz/WPcRgABBBBILqBf9mjwZrdZuat+pyXDkiTUT/bKeL4fpnwl4+G+dgLucu+s+NUOhZs5F2iXKSDn+2aHCCCAgOcE3GTPoxj147m+yWSF4lO/DnWcapXJfSTbli7Z/ujjTuAnbN6Br7wiKn/35UiHwE+y13W+r6ybpNXual8EfzqL8TsCCCDQs4A7+ufNBX1/X3Dz/VSR7LlnXB4V933Z/ZIGEgTyIUDwJx/q7BMBBDwrkEj27NkqUrEMCFSYkT9acr3i11PPhEVHl+m3zP/ft1pl8imJ0T5Ojfr2M560ulPwyj2pJOFz3xx5FgIIIOAKzDCJ9bUsXWbysK3uWwCIkT+uHte9CTDypzchHs+FAMGfXCizDwQQ8I0AI39801VpVTQePMlh0ud5b4Zk+UrLXlL4KjPiJ51cQ+VlTp6fzsGrRPAnLR5ejAACCBScgC7yMPNMJwD0+JNhWf1e7wGg3XscpmpG/hTc8dLfBpfYCZ+d1b76+1qej0CmBAj+ZEqS7SCAgO8F9u+3ZM9eEZ1SU1OTSKLr+4bRgC4CmjBZS4NJmJyLsuZ9S1551XnLveqKiAwfnt7x5QavNEF5+0Lwp70GtxFAAIH+Ccw6LypnTncCQI89EZb31vT8HqE5grSw0lf/nAvx2cUmKbiWFrPYBAWBfAkQ/MmXPPtFAAHPCWzZ6lSJVb481zUZr1A8508ORv4sXxmSRx5zlhQ79+yoWb49vcCPYrjBq25H/rDaV8aPGTaIAAKFIXDhrKi4U8AefTws73/QfQBojzvyp7owbGhl6gIlbe/LrPaVuiGvTF+A4E/6hmwBAQQCIrD1U+cET4d+U4It4I6c6Rw8yWSr135kyf0PhuXJp5232qmTo6LBn0yUMjdnUeecPy3OMewmlszEvtgGAgggUGgCsy+IyhmnOf+vH/59WD74MHkAKJ7zp4rzhkI7RvrbXjfnjztCt7+v5/kIZEIgo0u9P/HC67Jx83a58crzZeTwoZmoH9tAAAEEciYQX+adlb5yZp6vHWUz+LN/v8hLfw7LCpPfR0tFhdjfIrtTCTLRZnL+ZEKRbSCAAALdC1w8OypRE9NZ+E5IHno0LJ+9KSLHHJ0I8qz7xJJIRGTQILFzuXW/JR5BQOKrfbHUO0dDPgUyGvypMOPQH3zyFfmf3/9JzpsxSW65epacOun4fLaPfSOAAAJ9FkiM/OnzS3iiTwXi0746jZxJtzl19ZY8+HBYNAmo5o7SqQN6Kcrou62Z9hUf+dOxxu43iqz21dGF3xBAAIFUBC69KCoxMwDoncVOAOjWmyMyzHy//eZblryzyBnVSb6fVGQL7zXxkT8thdd2WuwdgYyejl5y3mkyY9oEeerFN+TRZ16Vv7jt/8rR40fLzVedL1fMniFlpW2ZrrzTfmqCAAII2AK7dlly8KD5Bm+gSBXDtwN/VHSXMyedhu80x5B+O6yBn6OPismN10Wy9m2wW/9DnXIWJYI/6bSE1yKAAAIIuAKXXeKMAFq8JCT/+5CTv819bNIpMTn/nMxM53W3yXUwBdzp2C3NyacQBrPVtMprAhkN/mjjKgcNkC/ccJF8/vrZ8uY7q+TBP7wsP/jZ/fKz3zwuV18yU242U8JGj6zxmgP1QQCBAhfYvsMBSHcVpgJn9E3zK9yRM52CJ6k2QFd8eeiRkOzaJXLkETG55caIhLKYVa/bnD9tq4i4J5mptofXIYAAAggkBK64VEcAWbJkmfPB/eSTYvaozsPSXLkxsQduBV0gsdR70FtK+7wskPHgj9vY3XsPyAcfb5J1G5zlcwYOKJcnnp8rDzw+R2aecbL8+Nt/Y75hN4kQKAgggIAHBLZtd07oRhyWmM/vgWpRhSwJxKdNZSD4c7BBzIifkNTvtOSI8TE7L0Q2Az9K0mvOH1b7ytKRw2YRQKBQBT5zeURGjgyJLgrBqqCFehSk3m532hc5f1I35JXpC2Q8+LN89UfyyNN/ljlzF0mryYKm08C+8/VbZebpJ0tDwyETAHrd5AV6WfbsO0DwJ/3+YwsIIJAhAc3VoqWGgYkZEvX2ZuI5fxrTH34956Ww7Kiz5PBxzoifcMdZAVmB0JE9uh89iWxtlXhOoWZW+8qKNxtFAAEEVGDaFKZ4cSSkJhBf6r1thG5qW+FVCKQnkNHgz/8+8ZL8318+LIPN1K+bTbLnGz9zrowdNTxeQx39o1PCbr32QrFC6Z9wxzfMDQQQQCBNgbp6ZwM1wxj5kyalL14eH/lzSCRmutxK8S3pw7WWLDereuk3etddHc1ajp9kqNqGAwdEGk0bNFeVlkTOH45jR4SfCCCAAAII5F+guC31LSN/8t8XhVyDjAZ/RtYOlR/841/IZbPO6DG5czicxUQIhdybtB0BBFIWqDMjN7QQ/EmZ0Hcv1OBJo5n2pRddjj2V8vobzvvZ2WdFzXK/uQ246NSvAwcsOWRGLw0a6Ow7EfxJpTW8BgEEEEAAAQSyIcDIn2yoss3+CmQ0+DNr5pT+7p/nI4AAAnkXqDdTvqJmJHd1tQiJcvPeHTmrQCL4Y5ngT/8DN0uXhWTTZkuGVMdk5pm5nwrQfvSSopmZ1vZFp4PlYupZzjqKHSGAAAIIIOBzgeIS5zyjpW16ts+bQ/V9KsAQHJ92HNVGAIHMCTDlK3OWftpSRblzIqbTplIpc91RPzP7HzhKZX+dX1NW5tyjI5e0MOrHceAnAggggAACXhOIj/wxufooCORLgOBPvuTZLwIIeEZAk/VqYcqXZ7okJxWJj5xpC570Z6c63WvPHpFxY2My6eTcj/rRusbrf8g5fuPBH1b66k9X8lwEEEAAAQSyLuCu9uW+V2d9h+wAgSQCBH+SoHAXAggUloBO+9LCSl+F1e/lnUbO9LX1+/eLzJ2XyPXT19dl+nmdl3tPrPSVn5FImW4f20MAAQQQQCAoAu6UbE0zoNO0KQjkQ4DgTz7U2ScCCHhKYAcrfXmqP3JVGXe594Z+Lvf+9jsh+8TtxBNictSR+Qu0uCN/DrVNW3O/TSRvVa6OIPaDAAIIIIBA3wXiU79Y7r3vaDwzowIEfzLKycYQQMCPAqz05cdeS7/ObvDEzZnTly3qc+e/5bx1njk9P9O93Hp2HrlE8MeV4RoBBBBAAAHvCbDcu/f6pNBqRPCn0Hqc9iKAQAeBXbssaW0VqRws4ibQ7fAEfgmsQCrBn8VLQ/bKcMceE5NRI/M36kc7pcwsVa+lsXPOnxLnfn4igAACCCCAgHcESoqd8wZ3mrZ3akZNCkWA4E+h9DTtRACBpALxlb5q8vtBPmnluDOrAu60Lzd40pedLVrivG1Om5LfUT9a1y45f9qGkTPtqy89yXMQQAABBBDIrYCb9LmFaV+5hWdvcQGCP3EKbiCAQCEK1LnJnocR/Cm0/u/vyJ8VK50VvkYcFpNjjs7/8RKvfzznj5O43M0pUGj9SXsRQAABBBDwsoD75Uwzy717uZsCXTeCP4HuXhqHAAK9CcTz/dT09kweD5pART9X+1q0xAmuTJuS/8CP9oWb8+dQ21L17slkSYk36he044X2IIAAAgggkI6AO/LHfb9OZ1u8FoFUBAj+pKLGaxBAIDAC8WlfjPwJTJ/2tSHxkTNtwZOeXvfJeks2brJkwACRqR6Y8qV1LSt3gjzutDUSPvfUgzyGAAIIIIBAfgXckblM+8pvPxTy3gn+FHLv03YEEJD4yB+CPwV3NMRz/vRhqXc318/UyfnP9eN2lDvyx12tjOCPK8M1AggggAAC3hNIrPbljCT2Xg2pUdAFCP4EvYdpHwIIdCuwZ68lTSbp3qCBIhUV3T6NBwIq4I78aehl5M/OnZasfted8uWd4E9RkYgOIY9ERDTwQ/AnoAcqzUIAAQQQCIRAYrWvQDSHRvhQgOCPDzuNKiOAQGYE6uqc7dSw0ldmQH22lZB5BywtFYmZ2VOH2pImJ2vC0uVO4GfSKTEZPDjZM/J3nxvA0qlfzc1OPd2EkvmrFXtGAAEEEEAAgc4C8Zw/rPbVmYbfcyRA8CdH0OwGAQS8J8BKX97rk1zXqH3wpLt9L1nqvFVOneSdUT9uXdsv9x4f+VNMwmfXh2sEEEAAAQS8IuB+OdPCal9e6ZKCqwfBn4LrchqMAAKuQDzfDyt9uSQFd13hJk3uZurXilUh0WlhY0bHZMwY7wVVysqdLtORS+7qIe7JZcF1Jg1GAAEEEEDAwwKM/PFw5xRI1Qj+FEhH00wEEOgqwEpfXU0K7Z74yJ9ugj/LVzhTqU45yXuBH+2r9kmf4yN/SgqtF2kvAggggAAC3hdwv5xh5I/3+yqoNST4E9SepV0IINCrANO+eiUK/BPaB086N1ZHhn28zpJwWOTkk7w35UvrGw9e2Tl/nBa4J5ed28PvCCCAAAIIIJA/AXep9+YW54ul/NWEPReqAMGfQu152o1AgQvs22+JLpE9wKzyNdCs9kUpTAF3ufeGJMu9L1+ZGPXj1YBKx5w/JHwuzKOYViOAAAII+EGguC0nXwsJn/3QXYGsI8GfQHYrjUIAgd4EWOmrN6HCeDw+cibJtK8VK523SK+O+tEecutv5/xpO5l0l5ItjB6klQgggAACCPhDwP0iyc3R549aU8sgCRD8CVJv0hYEEOizAFO++kwV6Ce6wRMdBda+vPueJfv2i4w4LCaHj/Nmvh+tb1mZU2utPzl/2vcgtxFAAAEEEPCWgJvwmZw/3uqXQqoNwZ+23o5EorJlW71Eo8nzOhwwy73sqN9TSMcGbUUg0ALxkT/DAt1MGteLQDz4Y3LmtC/L20b9eDXRs1vX+LQvzfnTtnSs+82i+xyuEUAAAQQQQCD/AvGcP0z7yn9nFGgNigqh3T/46f3y2HOvdWjqxOOPkEfv+Z593x9enCf/eveD0mLOnEvMX+Udt39Brrhwuv1Yk7nv23fdK3PmLhL9aDBu9HD51V232dcdNsgvCCDgK4EdJpmvlpoa747q8BWoTyvr5vxpP/Jn125LPvjQOT68POVLyd3g1b59IjFzKOu3ilbHOJZPe4ZqI4AAAgggECyB4rbVOBn5E6x+9VNrCiL4E5OYTJ96ovzzV2+J901ZmfPXV7dzj3z/3++T7932Obnq4rPk98++Jt/9t9/JWadNlOrKQfLkC/Nk4dI18tz9P5LaYdVy2x2/lDvvfkDu/ck/xLfFDQQQ8J9AfNoXwR//dV4Ga5xsta/5C9oCPxNjUmESgnu5uMGfvfucOjPqx8u9Rd0QQAABBApZIDHyh29pCvk4yGfbC2ba10CzpM+Rh4+MX0Yd5sz1eHX+MqkaPECuu/wcKSoKy01XnS/lZaUyd8Fyu19emrdYZp8zTcaPHWFWBSqTz18/W95e/K4cONgpQUQ+e5F9I4BAvwT2m1wuDQ3OqInBg/r1Up4cMIGKcqdB7sif9z+wZNES561x0inJpwF7icDN+bN3r1OrkhJGsnmpf6gLAggggAACroC72pc7Tdu9n2sEciVQECN/FHPFex/L7T/4tVRVDpRZZ02RM6acaBtvr9slY0bWxr1DZrz8mJE1sm3Hrvjj50w/Jf742FHDJWrG1uuIoYEDnE8NVQPbxvDFn8UNBBDoLFBSFJLiopi55D/mvP1T/YAcM8l8Rfj77dxThfW7Zcd3onLI5MzZsrlEHv69E/A550xLJk80c6jyVPTvZIB5PyorCfdYgyL7y8OoPeVLn1heZnFM9yjGg0EUKApbMqi8SCLEPoPYvbQpwwLhkCWDK4rN55kMb5jN9SpQYX9kjIpO++L8s1cunpAFgYII/kw4brw9aqfMjId/98P18sXbfyJ3fftv7Lw+e/cflNLSjsEbzfuzv21kz/4DDVLW7vHStjH1+8z9bmluibg3uUYAgW4E9GQjas40vPD3suVTZ7htrRkA6IX6dEPG3TkQKLLjO87KXr/5HyfwM+N0kcsujsYTKOegGl12UWw+zLaahQhaWnsefVRkv4snho9rzh+O6S6c3BFwgZLikDSbyI8u3kFBAIGeBcr078W8t+g5GSXHAvbbtWUHf5qaI+ToS4G/orTnL8VS2GRBvaQggj/XXnp2h0697Y5fydN/esMO/lQOGmBOlNuWSGl7VlNTiwwe6CR6GGSuNemzW5ra1tJ1H9f7G5oI/rg+XCPQnYCOZGg1J+de+HvZ8qmOPgpJ9ZCoqQ8fFrrrs8K533kr1ITJ06ZEZfaFelzkt/U64qepxYxIMieHvZXS0iJpaqtvkRld54W/sd7qzOMIZFKgosz8DZi/Ff1AS0EAgZ4FBpYX2+8tek5Gyb1ASUmR6MfJvQciZqGh3O/f73usGuj3FuS3/vmff5GH9h9WUy2Njc6ZsiZx3rhlR7wWOqVr09YdJrlzlX3f8JohsmHztvjjGzZvF50aVjPUeTz+ADcQQMA3Am6y51qSPfumz7JZ0cPHOSfAJ54Qk8sv9d+HRzdptRpxIpnNI4VtI4AAAgggkJ5AIulzetvh1QikIlAQwZ8f//Jh+eDjjWb4fKssX/2RPPvSAjnDrP6l5bwZk2XP3gPy+HNz7eHCjzz1ZznU1CznTJ9kP37BzCky57VFsn7TNmkwAaP7H58jp085IZ7vx34SPxBAwFcCde4y707ed1/VncpmXuAvPx+Rr381Ijdc2/som8zvPf0tusvV65YI/qTvyRYQQAABBBDIlkBiuffElO1s7YvtItBZoCCmfS1e8YE88MRLdtstM2rn4nNPlb/57OX27zrC57tfv1V+9IsH5Yc/u1+Ki4vk+7d/QYZUOUsAXXPJTHln2Rq57HPfEv0THW2SQ9/z49s6O/I7Agj4RODAAZGD7kpfgxny7JNuy3o1hwzx77HgrvilSKz2lfVDhR0ggAACCCCQskBJsZ5vWHnNK5hy5Xmh7wUKIvjzxL0/kH0msfPO3ftEp3FVlJd26LjrrzhXrjZBnq3b62Xk8GH2ku/uEzQZ9M9/+DXRxM+6vPuI4UPdh7hGAAEfCuyIj/rx74d9H7JT5SwKlLctV6+7cIeTZ3F3bBoBBBBAAAEEUhTQhRm0tJi8PxQEci1QEMEfRR1sEjvrpbtSVBQWXca9u6KJn/VCQQABfwu4+X5qyPfj746k9nEBcv7EKbiBAAIIIICApwXc6dnt1hPydH2pXLAECiLnT7C6jNYggEA6AnV1zqt1mXcKAkEQIOdPEHqRNiCAAAIIFIKAO/KH4E8h9Lb32kjwx3t9Qo0QQCCLAvFpX4z8yaIym86lACN/cqnNvhBAAAEEEEhdwJ2ezbSv1A15ZeoCBH9St+OVCCDgQwGmffmw06hyjwJl7XP+lPT4VB5EAAEEEEAAgTwKFJc4OSebW1jtK4/dULC7JvhTsF1PwxEoPAF7pa+DIro6UuXgwms/LQ6mQHlZInk5q30Fs49pFQIIIIBAMATiI39agtEeWuEvAYI//uovaosAAmkIuKN+apnylYYiL/WaAKt9ea1HqA8CCCCAAALJBeI5f1jtKzkQ92ZVgOBPVnnZOAIIeEkgnu+HZM9e6hbqkqYAOX/SBOTlCCCAAAII5EjAXe2rhZE/ORJnN+0FCP601+A2AggEWsBd6Ytl3gPdzQXXOHL+FFyX02AEEEAAAZ8KMPLHpx0XkGoT/AlIR9IMBBDoXcCd9lUzLJEjpfdX8QwEvC3QMeePt+tK7RBAAAEEEChkAUb+FHLv57/tBH/y3wfUAAEEciRQV+esrFBbk6MdshsEciDQPudPcTGBzRyQswsEEEAAAQRSEnDfp1ntKyU+XpSmQFGar+flCCCAgC8EDppVvg64K31V8gHZF51GJfsscO1VERHLkop2y773+cU8EQEEEEAAAQRyIhBf7YuEzznxZicdBQj+dPTgNwQQCKhAItkzgZ+AdnFBN+ukiXpcc2wX9EFA4xFAAAEEPC8Qz/lDwmfP91UQK8i0ryD2Km1CAIEuAvF8P0z56mLDHQgggAACCCCAAALZF3Bz/jQT/Mk+NnvoIkDwpwsJdyCAQBAF3JW+akn2HMTupU0IIIAAAggggIDnBZj25fkuCnQFCf4EuntpHAIIuALxaV81TI1xTbhGAAEEEEAAAQQQyJ1AcYmzLxI+586cPSUECP4kLLiFAAIBFmDaV4A7l6YhgAACCCCAAAI+EChpW5WzhWlfPuit4FWR4E/w+pQWIYBAJwF7pa8DIqWlIlWs9NVJh18RQAABBBBAAAEEciEQT/jMal+54GYfnQQI/nQC4VcEEAiegDvqp5YpX8HrXFqEAAIIIIAAAgj4RMBN+MzIH590WMCqSfAnYB1KcxBAoKtAXZ1l31lDsueuONyDAAIIIIAAAgggkBOBkPn0HQ6LRKMira052SU7QSAuQPAnTsENBBAIqsCOeqdlNSzzHtQupl0IIIAAAggggIAvBBj944tuCmQlCf4EsltpFAIItBeIj/xh2ld7Fm4jgAACCCCAAAII5FiAvD85Bmd3cQGCP3EKbiCAQFAF3OBP7bCgtpB2IYAAAggggAACCPhBwF3xi+Xe/dBbwaojwZ9g9SetQQCBTgINDSL73ZW+qmKdHuVXBBBAAAEEEEAAAQRyJ8C0r9xZs6eOAgR/OnrwGwIIBExgB8meA9ajNAcBBBBAAAEEEPCvANO+/Nt3fq85wR+/9yD1RwCBHgXcZd5J9twjEw8igAACCCCAAAII5ECgpNjZCcu95wCbXXQQIPjTgYNfEEAgaAJ1dU6LalnmPWhdS3sQQAABBBBAAAHfCRSXOFVubvFd1amwzwUI/vi8A6k+Agj0LJAY+UO+n56leBQBBBBAAAEEEEAg2wLxkT/NVrZ3xfYR6CBA8KcDB78ggEDQBOI5f2qC1jLagwACCCCAAAIIIOA3geIS5wtJRv74ref8X1+CP/7vQ1qAAALdCDQ0mpW+9ovoqgrVrPTVjRJ3I4AAAggggAACCORKID7yh2lfuSJnP20CBH84FBBAILACdW0rfdXWMOUrsJ1MwxBAAAEEEEAAAR8JVFQ4lW1o8FGlqWogBAj+BKIbaQQCCCQTcIM/NcOSPcp9CCCAAAIIIIAAAgjkVqC01NlfoxmhTkEglwIEf3Kpzb4QQCCnAnX1zu5qGPmTU3d2hgACCCCAAAIIIJBcoKrSGZG+Zy8Jn5MLcW+2BAj+ZEuW7SKAQN4FEsmemfaV986gAggggAACCCCAAAJSVeUg7NkLBgK5FSD4k1tv9oYAAjkUcKd91TLtK4fq7AoBBBBAAAEEEECgO4H4yJ89jPzpzoj7syNA8Cc7rmwVAQTyLKDzqPe5K31VM/Inz93B7hFAAAEEEEAAAQSMgK5CO8AkfW5tNavSHoAEgdwJEPzJnTV7QgCBHArU1TvfptQMI/CTQ3Z2hQACCCCAAAIIINCLQGWVc366l9E/vUjxcCYFCP5kUpNtIYCAZwQS+X48UyUqggACCCCAAAIIIICAVFU6COT94WDIpQDBn1xqsy8EEMiZQF2ds6taRv7kzJwdIYAAAggggAACCPQuEM/7w4pfvWPxjIwJEPzJGCUbQgABLwnEp32xzLuXuoW6IIAAAggggAACBS8QX/FrT8FTAJBDAYI/OcRmVwggkDsBpn3lzpo9IYAAAggggAACCPRdgJE/fbfimZkTIPiTOUu2hAACHhE4dMis9LVPpLhYZAgrfXmkV6gGAggggAACCCCAgArER/7sxQOB3AkQ/MmdNXtCAIEcCSRG/bDSV47I2Q0CCCCAAAIIIIBAHwXiI39Y7auPYjwtEwIEfzKhyDYQQMBTAnV1zjLvtcM8VS0qgwACCCCAAAIIIICAlJWJlJtLc7NIQwMgCORGgOBPbpzZCwII5FCgrt7ZWQ3JnnOozq4QQAABBBBAAAEE+ipQWeWMUN/Dil99JeN5aQoQ/EkTkJcjgID3BOLTvljm3XudQ40QQAABBBBAAAEEpKrSQdjDil8cDTkSIPiTI2h2gwACuRNwl3mvrcndPtkTAggggAACCCCAAAJ9FYjn/WHkT1/JeF6aAgR/0gTk5Qgg4C0BXelrr1k5objIrPQ1hITP3uodaoMAAggggAACCCCgAvEVvxj5wwGRIwGCPzmCZjcIIJAbAXfUD/l+cuPNXhBAAAEEEEAAAQT6L8DIn/6b8Yr0BAj+pOfHqxFAwGMC8Xw/TPnyWM9QHQQQQAABBBBAAAFXID7yx4xYpyCQCwGCP7lQZh8IIJAzgbo6Z1c1JHvOmTk7QgABBBBAAAEEEOifQHzkzx6rfy/k2QikKEDwJ0U4XoYAAt4UcKd91bLMuzc7iFohgAACCCCAAAIISEWFSEmJiOar1AsFgWwLEPzJtjDbRwCBnArU1TnfntQw7Sun7uwMAQQQQAABBBBAoH8CVVXO4iR7GP3TPzienZIAwZ+U2HgRAgh4UaCpSWSPmTddZFb6GspKX17sIuqEAAIIIIAAAggg0CZQVenc0PNXCgLZFiD4k21hto8AAjkTSCR7Zon3nKGzIwQQQAABBBBAAIGUBOJ5f/aS9yclQF7ULwGCP/3i4skIIOBlgXi+n2FeriV1QwABBBBAAAEEEEBAJL7i1x40EMi+AMGf7BuzBwQQyJFAfKUvkj3nSJzdIIAAAggggAACCKQqwMifVOV4XSoCBH9SUeM1CCDgSYH4tC+Wefdk/1ApBBBAAAEEEEAAgYQAOX8SFtzKvgDBn+wbswcEEMiRgDvti5W+cgTObhBAAAEEEEAAAQRSFnBX+9rLal8pG/LCvgsQ/Omj1YGGRtlRz2TMPnLxNARyLmCv9GX+RMNhkWFDSfic8w5ghwgggAACCCCAAAL9Ehg40Fml9mCDSHNzv17KkxHot4BZEJnSk0BTc4t8+657Zc7cRaI52MeNHi6/uus2+7qn1/FYsAX0n3NJSbDb6LfWuaN+asn347euo74IIIAAAggggEDBCujon/p6S/aYFb84jy3YwyAnDWfkTy/MT74wTxYuXSPP3f8jefuFe2TkYcPkzrsf6OVVPBxUgfUbLHno0bDc+eMiefKZsGzfwbKMXunrujqnL5jy5ZUeoR4IIIAAAggggAACvQnE8/4wyaQ3Kh5PU4CRP70AvjRvscw+Z5qMHzvCfubnr58tX/6nn8mBg40ycEB5L6/m4VQEYmbGzsZNlmzcaC56vdkyyyDGZNyYmIy1LyKDB+d2Wo/WY/5bIVnzfiLYs3yFJctXhGXyKVGZcUZMajw+4uTAgTZXNTUXTY7seDqu48bG7ClTqfRZvl5z8KDTpg2mPQtM/2ipIdlzvrqD/SKAAAIIIIAAAgj0U8BZ8csZ+SOS2884/awqT/e5AMGfXjpwe90uOWf6KfFnjR01XKImOlG3c48d/Pni37eYx2CMA2XpRmOjJZ9+asnb72RpB33cbJHp6tnnhWTySSF54+2ozH0zKkuXh8yljxvw2NM++tgSveSmuG9m2f17mTyhREYOzVWbciPHXgpToKzEJLCiIIBAnwSGVZb26Xk8CQEERGqrymDwkMDYkVFZvDQiz78Ysi8eqprnqvLbuz1XJV9VKLufwnxFkbyy+w80SFlpIrlLaVuil33mfkr2BMaMsuSo8eZyhCVHHG7Jrt0iH62LyUefRO3rxkPZ23eyLYfMoBIN+sw+L2yCfs4zxo0JywVnh2TOa1GZtyCa7GWeuq+kWGzPo44I2ba1w0TWbzKm6mouettvpVjbZB8nTpv0eGn35+q35lBfBBBAAAEEEEAAgQITGFJdYA2muXkTIPjTC/2ggRWiSZ/d0tSWhn2wuV/Lb+8ulq07G92Huc6CgOoPMv8UJ01xLlnYRZ83uc8EnfQSL+aL+VmznEv8Pp/c0AUFRo5xLjPPNoNMTezHyuKAmcoBxdIaicnBQ61ZE9q5P2ubZsMI5FRgyKASaWiKyKHmSE73y84Q8KOAjvrZd7BFmlu9/0WMH32pc7AEdNTPrv1N9jlZsFrm39aMHS/yw+/5t/65rbn55peSsgAJn3uhG14zRDZs3hZ/1obN2yVkPiHXDK2K38cNBIIgkM3ATxB8aAMCCCCAAAIIIIAAAggg4FcBgj+99NwFM6eYaT2LzJSYbdLQ2CT3Pz5HTp9yAsmee3HjYQQQQAABBBBAAAEEEEAAAQQQ8IYA07566YdrLpkp7yxbI5d97luiM2JGj6yVe358Wy+v4mEEEEAAAQQQQAABBBBAAAEEEEDAGwIEf3rph1KTPfbnP/yaaOJnXd59xPChvbyChxFAAAEEEEAAAQQQQAABBBBAAAHvCBD86WNfaOJnvVAQQAABBBBAAAEEEEAAAQQQQAABPwmQ88dPvUVdEUAAAQQQQAABBBBAAAEEEEAAgX4KEPzpJxhPRwABBBBAAAEEEEAAAQQQQAABBPwkQPDHT71FXRFAAAEEEEAAAQQQQAABBBBAAIF+ChD86ScYT0cAAQQQQAABBBBAAAEEEEAAAQT8JGDFTPFThakrAggggAACCCCAAAIIIIAAAggggEDfBRj503crnokAAggggAACCCCAAAIIIIAAAgj4ToDgj++6jAojgAACCCCAAAIIIIAAAggggAACfRcg+NN3qy7P3F6/Wxoam7rczx0IINCzQCQSlS3b6iUajfb8RB5FIMACLa2t3baup/eXAw2NsqN+T7ev5QEEgiYQNRkKUn2/4O8laEcD7elJoPFQk2zaukP0byZZ6e38i7+XZGrch0BwBIqC05TctWTdhq3yd9++Wzabf65aLjn/dLnzn/9KiovgzF0vsCevCvzgp/fLY8+91qF6E48/Qh6953v2fX94cZ78690PSktzi5SUFMsdt39Brrhweofn8wsCQRd4df5S+cYdv5blr/y2Q1N7en9pMn8z377rXpkzd5FY5lXjRg+XX911m33dYSP8gkCABDQ15bd/dK/doh9/5286tGz6FX8ne/cd7HDfP/7tjfKFGy4S/l46sPBLAQh86Z9+KvMXrRb9mxlSNUguOvc0+c7ffzbe8p7Ov/h7iTNxA4FACzDyJ4Xu/eHP7pcjxo2QhS/+pzz53/8i8xaulGfmzE9hS7wEgeAJxCQm06eeKM/e96P45ad3fMVuaN3OPfL9f79PvvXVm2XZy7+Vb3zpevnuv/1Odu/dHzwIWoRAEoFdu/fJ7Jv+Ub72nV8keVSkp/eXJ1+YJwuXrpHn7v+RvP3CPTLysGFy590PJN0OdyIQBIFnX1ogZ135f+S5lxckbY4ObtBgT/v3mysvPtN+Ln8vScm4M8ACR48fLY/91/dlyZzfyHdv+5w8/NQrsnTVh3aLezv/4u8lwAcGTUOgnQDBn3YYfbmpH1IXr/xQPn/dbKkoLxX9RzvrrCny8uuL+/JynoNAQQgMHFAhRx4+Mn4ZZT6kanl1/jKpGjxArrv8HCkqCstNV50v5WWlMnfB8oJwoZEIVJlvY3/3s3+SO7/5V10went/eWne/9/encfaUZUBAP9KgdKd97q8lqVCCFtDIBQLqAgUUhBIMGrji1tNRIIKkTUiKim1VjFuhbKKKJQAEaoQRCKNCk1jQAEDESQEUNbSV1pKd143nTPNu+XOo/fywl/33N/88d49M3Pb+X7fPZ3pN+eeeTxOPXFq7D9pYgwftkd8+bOnxqOPPxPr1m/s92dZQSAHgZOPmxK/vXFWTD/hwzsNZ8L4ztq5Jp139hw1otxXf9kpmQ2ZClzy9e6YfNCHYo8hu8cpJ0yN8WP3jL/94+ky2mbXX/pLph8KYRGoCCj+VECaNZcX8/yk4ZRpuH3fkl73vLmqr+k3gbYXeOrfL8bFs6+LOfMWxCNPPFPz6Hnzrdh3r/G19i6DBhXtcbFs+Vu1dV4QyFkgfeb3mTguxnSM7hdms/NL6j+T3nXumbR3VzmvQ7qjayGQo0AqcqabB8OH7rHT8G773aK4ZPb1Me+mheVccn076i99En63o8CLLy0t54Y75MBJZfjNrr/0l3b8lIi5HQUUfwaY9TVrN5TvGFJU1fuWIcW8JWvXb1/ft85vAu0qcNgh+8dpJx0d++0zIV5/Y0V89eKfRBq6n5bVa9fHu/tOWpfm/Vlr5EKisLS5QLPzy9p1G8o7un1MQ3bffh5aU6y3EGhHgdNPPiaOOfLQmNjVGYsWPxbd58wubsZtv5mgv7TjJ0LMSSCNBr3oimvjiMkHRBo9l5Zm11/6S8nkB4HsBcxQPMAUjxo5rHxHmhitb0mvRxZfc7EQIBAx44wT6hgunHVt3PunJeWkzqNHDo9Nm3f0nbRjb+/mGDVC/6lD02hLgWbnl5FFP6k/92wqnfSftvy4CLoQuPyCmTWHc2aeGSfPuCgefuSp6D5zWugvNRov2kggPe3rvO9eFVu3bo1r5p4fu+yy/T5/s+sv/aWNPiRCbWsBI38GmP7xYztiUDFs/5XXemrvfOnVZdE1rqPW9oIAgR0CE4q+sXFjb7ki9Z9XXl9e25geRZoeSZq+l24h0O4Czc4vXeM64+XXltWYXi7OQ+lrZOPG6D81FC/aVmDEsKHlXFh95xv9pW0/Cm0beBrdk0Zbp1GkC67+TnR2jKpZNLv+0l9qVF4QyFpA8WeA6e0YPTKOOvyguPXuByNV11946fX485InYvrxO5+McIB/hd0JtLTAldfcEc+9+Eps3rIlnnz6hfIrXx8pnv6VlpM+NiXeXr0u7v7Dw8VdqW1x5z1/iXd6N8WJHz2ypWN28AQGIrBp85ayf6T3pNdbtmwt397s/DL9+KPiwYcei3TDYUNRUE3noWOPmhwjhg8dyF9vXwItI7Bt27ayj6TzRRrJkPpLummQln89+5+yD6SveaURcTff+UCk+a+OmXJouV1/KRn8aBOB9RveiS98Y0759NQ5l34l1m3YWNxs64nX3nizFGh2/aW/tMkHRZhtLzComLx4+1m07SneP0Aq+Jx72bxYumxF8VDriNOmHR1zLzs7dt/Nt+jev6I9cxWYcfasePb5l8vw0ii51D/mFE82Sk+fSMtd9z0UP5p/e/kf3t2KPpMeR/qp0z5ebvODQO4Cy1e8HdNmXFAX5tQjDo5brrqsXNfo/NJbFEovnXtjccPhnzGo2HufYvL066+8MPbbd0Ldn6dBIBeBBQsXxY+LGwrvXr53/pfKJ0WmBwuka7H0lLy0pCewXlI89j195Sst+kvJ4EebCCztWRnTuy/uF21n8YTJJffOL9c3uv7SX/rRWUEgSwHFnw+Q1vQPbZprwV3XD4DorVkKrCmGHq9ctab4OmRneUFeDTKNdFjasyL26hpbPvK9ul2bQLsLNDq/pIk504SeE7vGtDuT+NtcII0CSqN90n9c954wLgYP7j+gXX9p8w+J8OsEml1/6S91XBoEshNQ/MkupQIiQIAAAQIECBAgQIAAAQIECOwQ6H+LZMc2rwgQIECAAAECBAgQIECAAAECBFpcQPGnxRPo8AkQIECAAAECBAgQIECAAAECjQQUfxrp2EaAAAECBAgQIECAAAECBAgQaHEBxZ8WT6DDJ0CAAAECBAgQIECAAAECBAg0ElD8aaRjGwECBAgQIECAAAECBAgQIECgxQUUf1o8gQ6fAAECBAgQIECAAAECBAgQINBIQPGnkY5tBAgQIECAAAECBAgQIECAAIEWF1D8afEEOnwCBAgQIECAAAECBAgQIECAQCMBxZ9GOrYRIECAAAECBAgQIECAAAECBFpcQPGnxRPo8AkQIECAAAECBAgQIECAAAECjQQUfxrp2EaAAAECBAgQIECAAAECBAgQaHEBxZ8WT6DDJ0CAAAECBAgQIECAAAECBAg0ElD8aaRjGwECBAgQIECAAAECBAgQIECgxQUUf1o8gQ6fAAECBAgQIECAAAECBAgQINBIQPGnkY5tBAgQIECAAAECBAgQIECAAIEWF1D8afEEOnwCBAgQIECAAAECBAgQIECAQCMBxZ9GOrYRIECAAAECBAgQIECAAAECBFpcQPGnxRPo8AkQIECAAAECBAgQIECAAAECjQQUfxrp2EaAAAECBAi0vEDPilXxxfPmxqyf/qYull/88u6Y+c0fxspVa+rWaxAgQIAAAQIEchNQ/Mkto+IhQIAAAQIE6gS6xnbEKSdOjYX3L47bFi4qtz3w17/Hr+74Y3zyE8fFmI5RdftrECBAgAABAgRyE9g1t4DEQ4AAAQIECBCoCsyccUo8+fTz8bMb7orOPUfG7J/fGt1nTovPnH58dVdtAgQIECBAgEB2AoP+VyzZRSUgAgQIECBAgEBFYP2Gd6L7nCviv68uiyMPOzBumfft2HXXwZW9NAkQIECAAAEC+Qn42ld+ORURAQIECBAg8B4CQ4cOiYldY8oto0YMi8GDXQa9B5NVBAgQIECAQIYCrnoyTKqQCBAgQIAAgf4C191ybzz25HNx1ufPiMWPPhU33X5//52sIUCAAAECBAhkKGDOnwyTKiQCBAgQIECgXiAVe25YcF9869zPRZr/Z/WadTH/5t/H4ZMPiGOnTK7fWYsAAQIECBAgkJmAOX8yS6hwCBAgQIAAgXqBpT0r49NnXR5Tjzg45s89v9zY27spur/2/eIx76vjnl//IMZ2jq5/kxYBAgQIECBAICMBxZ+MkikUAgQIECBAgAABAgQIECBAgEBVwJw/VRFtAgQIECBAgAABAgQIECBAgEBGAoo/GSVTKAQIECBAgAABAgQIECBAgACBqoDiT1VEmwABAgQIECBAgAABAgQIECCQkYDiT0bJFAoBAgQIECBAgAABAgQIECBAoCqg+FMV0SZAgAABAgQIECBAgAABAgQIZCSg+JNRMoVCgAABAgQIECBAgAABAgQIEKgKKP5URbQJECBAgAABAgQIECBAgAABAhkJKP5klEyhECBAgAABAgQIECBAgAABAgSqAoo/VRFtAgQIECBAgAABAgQIECBAgEBGAoo/GSVTKAQIECBAgAABAgQIECBAgACBqoDiT1VEmwABAgQIECBAgAABAgQIECCQkYDiT0bJFAoBAgQIECBAgAABAgQIECBAoCqg+FMV0SZAgAABAgQIECBAgAABAgQIZCSg+JNRMoVCgAABAgQIECBAgAABAgQIEKgKKP5URbQJECBAgAABAgQIECBAgAABAhkJKP5klEyhECBAgAABAgQIECBAgAABAgSqAoo/VRFtAgQIECBAgAABAgQIECBAgEBGAoo/GSVTKAQIECBAgAABAgQIECBAgACBqoDiT1VEmwABAgQIECBAgAABAgQIECCQkYDiT0bJFAoBAgQIECBAgAABAgQIECBAoCqg+FMV0SZAgAABAgQIECBAgAABAgQIZCSg+JNRMoVCgAABAgQIECBAgAABAgQIEKgKKP5URbQJECBAgAABAgQIECBAgAABAhkJKP5klEyhECBAgAABAgQIECBAgAABAgSqAoo/VRFtAgQIECBAgAABAgQIECBAgEBGAoo/GSVTKAQIECBAgAABAgQIECBAgACBqoDiT1VEmwABAgQIECBAgAABAgQIECCQkYDiT0bJFAoBAgQIECBAgAABAgQIECBAoCqg+FMV0SZAgAABAgQIECBAgAABAgQIZCSg+JNRMoVCgAABAgQIECBAgAABAgQIEKgKKP5URbQJECBAgAABAgQIECBAgAABAhkJKP5klEyhECBAgAABAgQIECBAgAABAgSqAoo/VRFtAgQIECBAgAABAgQIECBAgEBGAoo/GSVTKAQIECBAgAABAgQIECBAgACBqoDiT1VEmwABAgQIECBAgAABAgQIECCQkYDiT0bJFAoBAgQIECBAgAABAgQIECBAoCqg+FMV0SZAgAABAgQIECBAgAABAgQIZCSg+JNRMoVCgAABAgQIECBAgAABAgQIEKgK/B/JsUD4maI+JgAAAABJRU5ErkJggg==", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import plotly.express as px\n", "\n", "px.line(x=df.index,y=df.rpm)" ] }, { "cell_type": "code", "execution_count": 4, "id": "958759fb-5f54-412d-9fe1-327c82388cb0", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "x=%{x}
y=%{y}", "legendgroup": "", "line": { "color": "#636efa", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "", "orientation": "v", "showlegend": false, "type": "scatter", "x": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243 ], "xaxis": "x", "y": [ 1296, 1296, 1296, 1200, 1296, 1264, 1296, 848, 1232, 1296, 1280, 1296, 1328, 944, 1344, 1328, 1360, 1296, 1296, 864, 1344, 1184, 896, 19840, 23536, 24656, 21216, 22144, 22016, 22352, 21760, 1296, 5824, 7376, 7456, 7680, 11920, 11136, 11680, 10400, 10208, 1296, 8272, 1280, 1360, 1232, 1344, 1312, 1216, 1088, 1344, 1296, 880, 1360, 912, 1280, 1200, 1344, 1264, 1312, 1440, 1296, 864, 1264, 1376, 1312, 1296, 1264, 912, 1232, 880, 1296, 912, 1376, 1328, 1328, 848, 1264, 1168, 928, 1296, 816, 848, 1200, 1312, 1216, 1280, 864, 1280, 1152, 1328, 1216, 1328, 1216, 944, 1424, 1280, 848, 1312, 1296, 1136, 800, 816, 43216, 20352, 20960, 23040, 20960, 21568, 20256, 24416, 10464, 2112, 8832, 3664, 5264, 4656, 1392, 1280, 8800, 13136, 16640, 16336, 15808, 20544, 15712, 14224, 13712, 19808, 21920, 22080, 21904, 21264, 20976, 20912, 20864, 19424, 20400, 23584, 22400, 19488, 23232, 22720, 21984, 20176, 20512, 20496, 22112, 23488, 22560, 19008, 21312, 21168, 24048, 24512, 23888, 27776, 24992, 24848, 24656, 24256, 24048, 24640, 27840, 25056, 25888, 26128, 27360, 28304, 29552, 38400, 29424, 30656, 28816, 28000, 28064, 25424, 26256, 26416, 25552, 27696, 27232, 28560, 29424, 31728, 12880, 14464, 14256, 18384, 18320, 1616, 1856, 7744, 6736, 4384, 5248, 9392, 6688, 7536, 6064, 5488, 8832, 8336, 9904, 9184, 9904, 5424, 1280, 9888, 9344, 7040, 9408, 8464, 9680, 6848, 7088, 8896, 8464, 8240, 8960, 7664, 5424, 8064, 5424, 5056, 9200, 8768, 8576, 9824, 10064, 9568, 10080, 10224, 10256, 10304, 10304, 10368, 10384, 10368, 10352, 10048, 10384, 10288, 10288 ], "yaxis": "y" } ], "layout": { "autosize": true, "legend": { "tracegroupgap": 0 }, "margin": { "t": 60 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ 0, 243 ], "title": { "text": "x" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ -1556.4444444444443, 45572.444444444445 ], "title": { "text": "y" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABH8AAAFoCAYAAADOwFcGAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAEf6ADAAQAAAABAAABaAAAAACIZLqEAABAAElEQVR4Aey9B4Ab5Zn//0ja9brsuhdcwAYbbDDYgMHGEHo1JQkB0huX5I5LSL8cuVyOXMr9c7/k0i4X0ggJySUkJJBwVFNN77hRbbANLrgbe913Jf3fZ1690qxW0kq7KqPR5wWvRlPe8nklzcx3nhJJmiIUCEAAAhCAAAQgAAEIQAACEIAABCAAgVASiIZyVAwKAhCAAAQgAAEIQAACEIAABCAAAQhAwCOA+MMHAQIQgAAEIAABCEAAAhCAAAQgAAEIhJgA4k+IJ5ehQQACEIAABCAAAQhAAAIQgAAEIAABxB8+AxCAAAQgAAEIQAACEIAABCAAAQhAIMQEEH9CPLkMDQIQgAAEIAABCEAAAhCAAAQgAAEIIP7wGYAABCAAAQhAAAIQgAAEIAABCEAAAiEmgPgT4sllaBCAAAQgAAEIQAACEIAABCAAAQhAAPGHzwAEIAABCEAAAhCAAAQgAAEIQAACEAgxAcSfEE8uQ4MABCAAAQhAAAIQgAAEIAABCEAAAog/fAYgAAEIQAACEIAABCAAAQhAAAIQgECICSD+hHhyGRoEIAABCEAAAhCAAAQgAAEIQAACEED84TMAAQhAAAIQgAAEIAABCEAAAhCAAARCTADxJ8STy9AgAAEIQAACEIAABCAAAQhAAAIQgADiD58BCEAAAhCAAAQgAAEIQAACEIAABCAQYgKIPyGeXIYGAQhAAAIQgAAEIAABCEAAAhCAAAQQf/gMQAACEIAABCAAAQhAAAIQgAAEIACBEBNA/Anx5DI0CEAAAhCAAAQgAAEIQAACEIAABCCA+MNnAAIQgAAEIAABCEAAAhCAAAQgAAEIhJgA4k+IJ5ehQQACEIAABCAAAQhAAAIQgAAEIAABxB8+AxCAAAQgAAEIQAACEIAABCAAAQhAIMQEEH9CPLkMDQIQgAAEIAABCEAAAhCAAAQgAAEIIP7wGYAABCAAAQhAAAIQgAAEIAABCEAAAiEmgPgT4sllaBCAAAQgAAEIQAACEIAABCAAAQhAAPGHzwAEIAABCEAAAhCAAAQgAAEIQAACEAgxAcSfEE8uQ4MABCAAAQhAAAIQgAAEIAABCEAAAog/fAYgAAEIQAACEIAABCAAAQhAAAIQgECICSD+hHhyGRoEIAABCEAAAhCAAAQgAAEIQAACEED84TMAAQhAAAIQgAAEIAABCEAAAhCAAARCTADxJ8STy9AgAAEIQAACEIAABCAAAQhAAAIQgADiD58BCEAAAhCAAAQgAAEIQAACEIAABCAQYgKIPyGeXIYGAQhAAAIQgAAEIAABCEAAAhCAAAQQf/gMQAACEIAABCAAAQhAAAIQgAAEIACBEBNA/Anx5DI0CEAAAhCAAAQgAAEIQAACEIAABCCA+MNnAAIQgAAEIAABCEAAAhCAAAQgAAEIhJgA4k+IJ5ehQQACEIAABCAAAQhAAAIQgAAEIAABxB8+AxCAAAQgAAEIQAACEIAABCAAAQhAIMQEEH9CPLkMDQIQgAAEIAABCEAAAhCAAAQgAAEIIP7wGYAABCAAAQhAAAIQgAAEIAABCEAAAiEmgPgT4sllaBCAAAQgAAEIQAACEIAABCAAAQhAAPGHzwAEIAABCEAAAhCAAAQgAAEIQAACEAgxAcSfEE8uQ4MABCAAAQhAAAIQgAAEIAABCEAAAog/fAYgAAEIQAACEIAABCAAAQhAAAIQgECICSD+hHhyGRoEIAABCEAAAhCAAAQgAAEIQAACEED84TMAAQhAAAIQgAAEIAABCEAAAhCAAARCTADxJ8STy9AgAAEIQAACEIAABCAAAQhAAAIQgADiD58BCEAAAhCAAAQgAAEIQAACEIAABCAQYgKIPyGeXIYGAQhAAAIQgAAEIAABCEAAAhCAAAQQf/gMQAACEIAABCAAAQhAAAIQgAAEIACBEBNA/Anx5DI0CEAAAhCAAAQgAAEIQAACEIAABCCA+MNnAAIQgAAEIAABCEAAAhCAAAQgAAEIhJgA4k+IJ5ehQQACEIAABCAAAQhAAAIQgAAEIAABxB8+AxCAAAQgAAEIQAACEIAABCAAAQhAIMQEEH9CPLkMDQIQgAAEIAABCEAAAhCAAAQgAAEIIP7wGYAABCAAAQhAAAIQgAAEIAABCEAAAiEmgPgT4sllaBCAAAQgAAEIQAACEIAABCAAAQhAAPGHzwAEIAABCEAAAhCAAAQgAAEIQAACEAgxAcSfEE8uQ4MABCAAAQhAAAIQgAAEIAABCEAAAog/fAYgAAEIQAACEIAABCAAAQhAAAIQgECICSD+hHhyGRoEIAABCEAAAhCAAAQgAAEIQAACEGgCQd8JrNuyp++VUAMEQk5gyKBm6YwnZdfezpCPlOFBoO8Ehrf1k9374rJ3f7zvlVEDBEJOYOSQFtmxq0P2dyZCPlKGB4G+Exg9tL9sbd/nXZP1vTZqgEB1CYwbMaC6DYasNSx/QjahDAcCEIAABCAAAQhAAAIQgAAEIAABCPgJIP74abAMAQhAAAIQgAAEIAABCEAAAhCAAARCRgDxJ2QTynAgAAEIQAACEIAABCAAAQhAAAIQgICfAOKPnwbLEIAABCAAAQhAAAIQgAAEIAABCEAgZAQQf0I2oQwHAhCAAAQgAAEIQAACEIAABCAAAQj4CSD++GmwDAEIQAACEIAABCAAAQhAAAIQgAAEQkYA8SdkE8pwIAABCEAAAhCAAAQgAAEIQAACEICAnwDij58GyxCAAAQgAAEIQAACEIAABCAAAQhAIGQEEH9CNqEMBwIQgAAEIAABCEAAAhCAAAQgAAEI+Akg/vhpsAwBCEAAAhCoQwLxuEhnZx12nC5DAAIQgAAEIAABCFSFQFNVWqERCEAAAhCAAAQqRuDr/2FP5//0uU4ZPLhizVAxBCAAAQhAAAIQgECdEsDyp04njm5DAAIQgAAEsgnEE5HsVbyHAAQgAAEIQAACEICAIP7wIYAABCAAAQiEhEDCuH9RIAABCEAAAhCAAAQgkE0A8SebCO8hAAEIQAACdURA4/240kHcH4eCVwhAAAIQgAAEIAABHwHEHx8MFiEAAQhAAAL1RiCRyPS4oyOzzBIEIAABCEAAAhCAAAQcAcQfR4JXCEAAAhCAQB0S6GL5g/hThzNIlyEAAQhAAAIQgEDlCSD+VJ4xLUAAAhCAAAQqRiCO5U/F2FIxBCAAAQhAAAIQCAsBxJ+wzCTjgAAEIACBhiSQiGcyfOH21ZAfAQYNAQhAAAIQgAAEeiSA+NMjInaAAAQgAAEIBJdAF8ufzowQFNwe0zMIQAACEIAABCAAgWoTQPypNnHagwAEIAABCJSRADF/ygiTqiAAAQhAAAIQgEBICSD++CZ2w+ZtsnvPPt8akc1bt8ut9zzWZR1vIAABCEAAAkEhkPCneifgc1CmhX5AAAIQgAAEIACBQBFoOPHn57+7Vaaf9lFZ+cab6YlY8fo6mfeBq+Ssy74gc86/Qq761s+lo7PT275sxRq5+jvXpfdlAQIQgAAEIBAkAl3cvhB/gjQ19AUCEIAABCAAAQgEhkBDiT/zFzwt11z/t27wv/H96+WQiWPlyTt+Jjdf90156Mklcsv8R7vtxwoIQAACEIBA0Ajg9hW0GaE/EIAABCAAAQhAIHgEGkb8WfrSCrn6u9fJt//lE11mYdv2dnlmyTL5yGXnysABLXLowRPkrJNnyT0PPtNlP/fmgUcXyqWf+JosfvE1t4pXCEAAAhCAQM0I4PZVM/Q0DAEIQAACEIAABOqGQFPd9LQPHX1zwxa58l9/JF++8v0ya+bULjVtNHF+ksmkTJwwJr1el1Usyi6PP/uCfPHr18hXPvtBmXnE5PTmtgENgTE9XhYg0BsCzU1RiRm5OUoyot7g45gGI9BkviwD+ok0x3r+wrQ0++Ako9I2oGGe6/gGzmIjE4iZE8vAlpi0NPPZb+TPAWMvjkDUfF8G9W+SRCJZ3AHsBQEIhIZA6FWLXbv3yie/8kN5x7knycXzThYN6uwvO9p3e29bWsxVdqq09GuW9l12vVu38Pnl8pmv/rdcZQSkSy841a22r5GeL867HsA7CDQeAf2WeF8Vvi+NN/mMuHcE0l+awofbmD/2Ir5DY/7wHSsMjK3hJKCfey7Hwjm3jKoyBDhXVIYrtUIgwARCL/48t3SZvLZqrRx9xBT55g9+a7J57fWm45rf/E0uufBUGTak1Xu/b38mSqYutw0amJ62/R2dcsVV35eDxo+Ry8wx2aV9d+bY7G28hwAELIHooGbpjCdl114bTB0uEIBAfgJq8bNnX1z27vel8sqze/tuveONeVt3701K+26+Y3lQsTqkBNTiZ7c5t+zvTIR0hAwLAuUjMKBfzLsW02syCgTqjQAeN32bsdDbx6pg84n3XyjDh7bJ0MGtMrhtkEes1Yg7/fv1k9Ejh5mHpBF5Y82GNMlVq9fLmFHD0u91+5WXXyxvbtwiX//e9en1LEAAAhCAAARqTYCYP7WeAdqHAAQgAAEIQAACwScQessfjd/z6Y+9Kz0T6vb1vzfdIx++7Bw5+KCx3vpZMw6T6/88X46cdrCsXb9Z7n34WfmnK96TPqa5KSYfuvQcOerwQ+RjX/iODB82WD778UvS21mAAAQgAAEI1IoA2b5qRZ52IQABCEAAAhCAQP0QCL3lT/ZURFIO4WrN48q/ff7DsnzFGpk97wp55+VflZNnHyVvNzGCXIlELaajp0+R7/37J+VXN9wuN/z1PreZVwhAAAIQgEDNCCR8ni7GS5kCAQhAAAIQgAAEIACBbgQiJtMVDp8pLOtMVrDBrQOlddCAbqAKrVi3ZU+hzWyDAAQMgSHE/OFzAIGiCQxv6ye7i4z5s2hxVG6+xT6kGDUqKZ/+x57jBBXdEXaEQB0QGDmkRXbs6iDmTx3MFV2sPYHRQ/vL1vZ9XhzG2veGHkCgNALjRpR2n15a7eHfO/RuX6VM4bgxI0rZnX0hAAEIQAACNSdgs33ZbnR0ZKxaa94xOgABCEAAAhCAAAQgEBgCiD+BmQo6AgEIQAACECidgD/gcyfJJ0sHyBEQgID85ncxWbEyIu9/T1ymTcUpgI8EBCAAgTASaLiYP2GcRMYEAQhAAAKNS6Cr5U/jcmDkEIBA7wmo8KNl+WtYD/aeIkdCAAIQCDYBxJ9gzw+9gwAEIAABCBQk0CXbFwGfC7JiIwQgAAEIQAACEGhUAog/jTrzjBsCEIAABEJBwC/+aOavTgSgUMwrg4BAtQj4MwZi91Mt6rQDAQhAoPoEEH+qz5wWIQABCEAAAmUj4L9x00oRf8qGloog0BAE2ndmhtm+E/knQ4MlCEAAAuEigPgTrvlkNBCAAAQg0GAE/JY/OvQOgj432CeA4UKgbwR2tmcEn/b2vtXF0RCAAAQgEFwCiD/BnRt6BgEIQAACEOiRgD/gs+5MuvcekbEDBCDgI+C3/NmJ5Y+PDIsQgAAEwkUA8Sdc88loIAABCECgwQj4U73r0LH8abAPAMOFQB8J+F29/EJQH6vlcAhAAAIQCBgBxJ+ATQjdgQAEIAABCJRCoJvbFwGfS8HHvhBoeAJ+Vy/9Pdm9u+GRAAACEIBAKAkg/oRyWhkUBCAAAQg0CoHubl+NMnLGCQEIlIOA3/JH68t+X442qAMCEIAABGpPAPGn9nNADyAAAQhAAAK9JoDbV6/RcSAEIGAI7MwK8rzTl/0LQBCAAAQgEB4CiD/hmUtGAgEIQAACDUggnshk6tHhE/OnAT8EDBkCfSDg4vyMHJH0asHypw8wORQCEIBAgAkg/gR4cugaBCAAAQhAoCcCLuZPU8zuSbavnoixHQIQ8BNwYs/YsXatPwaQfz+WIQABCECgvgkg/tT3/NF7CEAAAhBocALO7aulvwXRQcDnBv9EMHwIlEbAiT3jDrCWP7h9lcaPvSEAAQjUCwHEn3qZKfoJAQhAAAIQyEHABXzu32I34vaVAxKrIACBnASc8NPaKjJ4MG5fOSGxEgIQgEBICCD+hGQiGQYEIAABCDQmAef21b+/vXFD/GnMzwGjhkBvCDiXr7bWpKgApAXLH8uBvxCAAATCRgDxJ2wzynggAAEIQKChCCQSdrgtWP401LwzWAiUg4Cz/Gkzwo/+0+LW2Xf8hQAEIACBsBBA/AnLTDIOCEAAAhBoSAJpyx/En4acfwYNgb4QcJY/rW3G8sf807JzZ9cMgn2pn2MhAAEIQCA4BBB/gjMX9AQCEIAABCBQMgEn/qQDPneUXAUHQAACDUrAuXip1Y/GDWtuFtm33/zb16BAGDYEIACBEBNA/Anx5DI0CEAAAhAIPwHn9tW/JRXzp5On9uGfdUYIgfIQcC5ebW22PveK9U95+FILBCAAgSARQPwJ0mzQFwhAAAIQgECJBJzlT3+X6h3LnxIJsjsEGpeAc/vSgM9a3Gv7zsZlwsghAAEIhJUA4k9YZ5ZxQQACEIBAQxBwqd4J+NwQ080gIVBWAs7yx2X6cq/OHaysjVEZBCAAAQjUlADiT03x0zgEIAABCECgbwQScXs8lj9948jREGhEAmnLn1Sw54zlD+6jjfh5YMwQgEC4CSD+hHt+GR0EIAABCIScQDxhb9LSMX9w+wr5jDM8CJSPgLPwcWne3auzCCpfS9QEAQhAAAK1JoD4U+sZoH0IQAACEIBAHwi4mD9pt6/OPlTGoRCAQMMQ2LlLRAPGDxwoEovZYbemAj8T8LlhPgYMFAIQaCACiD8NNNkMFQIQgAAEwkcAt6/wzSkjgkA1COxst1aDztVL23TLBHyuxgzQBgQgAIHqEkD8qS5vWoMABCAAAQiUlYAL+Ny/xVbb0UGsjrICpjIIhJSAE3hcencdJgGfQzrZDAsCEICAIYD4w8cAAhCAAAQgUMcEMm5fNlVzBzF/6ng26ToEqkcgHey5NdNmxvIHETlDhSUIQAAC4SCA+BOOeWQUEIAABCDQoAQ0ZocWsn1ZDvyFAASKI+CCOrelMn3pUYMGmSfD5u5g924RJywXVxt7QQACEIBA0Akg/gR9hugfBCAAAQhAIA+BpDH2UfEnYh7SNzXZmzZ9z01bHmCshgAE0gSc25dz9XIb0hm/dmL945jwCgEIQCAMBBB/wjCLjAECEIAABBqSgBN5XKae5maLAdevhvw4MGgIlEQgV8BnraC11bqQOsugkiplZwhAAAIQCCwB85yQAgEIQAACEIBAPRJwLl+x1KMcFX/27RPpMOne+9fjgOgzBCBQNQLO8scf8Fkbd+937qxaV6rS0E1/i3nubOednZBRo6zAVZWGaQQCEIBAQAhg+ROQiaAbEIAABCAAgVIJOMufaMwe2dzsgj7jrlEqS/aHQKMRyBXwWRmEMejz/v0ii5dEZPmrEXn6WX4fG+2zznghAAFLAPGHTwIEIAABCECgTgm4NO9pt6+UPS9uX3U6oXQbAlUk4Ny6Wn0Bn7V5FwMoTJY/S57P3PK48VURNU1BAAIQCASBzC9hILpTuU4kjG38+o1b5Y21G6SzM56zoQ2bt8nuPcZe3lc2b90ut97zmG8NixCAAAQgAIFgEEikTmeanUcLMX8sB/5CAAKFCbhsXgMGmN+NrCAQ+QI+b9xUvxYzS5Zm+q5WQBQIQAACjUgg6+c+nAhumf+I/MeP/ld27d7rDXD4sMHy/33543LynBne+xWvr5NPfeVHsmbdRu/9+WeeIN/68sfMybBJlq1YI1d/5zq56OwTwwmHUUEAAhCAQN0SiMftDU0sZt29EH/qdirpOASqSiDj8tU99o0L+LyzPdOlPXtE/vCnmFzx8U7pX2cBxTZujMiq1xF/MrPJEgQg0KgEGsLyp9lcDX/tCx+RJ267Rp6642dyzPQp8p//84f0nH/j+9fLIRPHypNm283XfVMeenKJ3DL/0fR2FiAAAQhAAAJBJJB2+8q2/DEBnykQgAAE8hFIu3y1dt/DBXx2AaF1j9vujMnWrSJPPFV/tw6Ln7fCTySl/+zfnxGCuo+eNRCAAATCS6D+fsF7MRfnnzFHLjhrrglgN1AGDewvw4a2ydDB9my3bXu7PLNkmXzksnNl4IAWOfTgCXLWybPkngefydnSA48ulEs/8TVZ/OJrObezEgIQgAAEIFAtAs7tKx3zJ5XqvbOjWj2gHQhAoB4JOGHHCT3+MWS7fT31TFSWpgSU+xdExQWa9x8T5OUlS+3tznGzEl43cfsK8mzRNwhAoJIEGkL8cQBvv/dx+cxX/1see/p5+fTH3uWt3mji/CSTSZk4YYzbzVvesGlb+r1bePzZF+SLX79G3vvOM2TmEZPdal4hAAEIQAACNSHgLH+6x/zhyXZNJoRGIVAnBHbutL8RLrOXv9tpty+T6n2DcZm6/c6utwv1ZP3zyrKIbN8uMnp0UqYeal3cEH/8s80yBCDQSAQaIuaPm9CVq9fLtu07pdM8snjLvGrZ0b7be21p6ee96p+Wfs3SvsuudysXPr/cE46uuvL9cukFp7rV3uuoIS1d3vMGAhDoTiAWixihVWRgSyondfddWAMBCKQINJnvS3NTVNoGFD5N79quNzMJc96KyqghTdI2UJ9sJ6XFxKwbNQQBiA9UYxBoikVlaGs/72FeY4y476Ps3G9/K8aOyv1b0dYaF7UO+stNTR7XE2dHZMb0iPzs1wl52lgCvfO8lJlh37tS0Rr+7xU7zrnHxWT0ML3+SEgyYX8vK9pwgCuPRSMyvK2F70uA54iuQaBSBApfVVaq1RrVe+XlF4v++91f7pav/Oe1nnvX4LaBXm/27c/YyOty2yC7Xjfu7+iUK676vhw0foxcdmFX4Ue3v7Urc6y+p0AAAt0JtJqb2Hg8KXv258621/0I1kCgcQkMGdgsezri5vxj3RTykXhrlwo85l8k6Z2Lkl5Qi4js2GUecuxSYYgCgfATGNraLLv2dEqHOcdQiiOweav97Whqyf1b0doa9cSfDZuSMnKEyHnnxr1sggeOj8rqtSLzH+yUOccFm7dmNHtmobVamnZ4p+zapWyisnuv/b0sjlT49hre1k927O6QeCLY8xc+8oyoHAQwuugbxYYSfxyqyRPHyb59+43Vzy4ZPXKYRMzF8htrNsgYs6xllbEQGjPKLut73a6i0U9/e4t8/XvXy9e/dLmuTpeOzsIX5+kdWYBAAxNImIsMvdDg+9LAHwKGXjSBhDGTU7G0p++LDVwaM+cpu2/MWECoGLR3X8/HFt0ZdoRAwAmoVWlnEd+XgA+jqt1b+oK9BWhtTZjfme4iwPYdGVevC+aZhzbeb4zI7NlJWf3XmDz2uMixRwf7+vee++0Yph6WlEGDErJnjwpeYu4BGvv30X5fEt53pqofOhqDAARqTiDzy17zrlSuAz/5zd/k0aeXyu49+2T9xq3yyz/cLpMOPEA05fuwIW0ya8Zhcv2f58uevfvk1VVr5d6Hn5WzTzku3aHmpph86NJz5Jpvf15uM3GDfnTtTeltLEAAAhCAAARqRcAFXs0O+NyBQWqtpoR2IRB4Ahq0WcuIEUkZP6678KPb3nFhXEaOTMqxxyRk8iGZfWYelZTRo5KycVNEFi+1YoruH7Ty0iuRdGayOcdbkapfPzsOsn0FbbboDwQgUC0CDWH5o/F9/vHLPzBPUe2P/+RJ4+S/rv7HNON/+/yH5VP/8kOZPe8KEylBZN7ps+Xt556U3h5JRdI82qSI/96/f9KL/TN6xFB538VnpvdhAQIQgAAEIFBtAonUg3fP4Mc03pw6qyP+VHsmaA8C9UFgxcqILHjIij8XnJcQFyw+u/eHT0vK4dNyu2nPMdY/t94ekSdN2veZR+XeJ7u+ar5/8aWI/PHPNr7gCbMTMmWyFX36pcJ7EvC5mrNBWxCAQJAINIT486+f/aB86ZPvlQ2btkp/E9h5lBFu/GXKpPEy/4bvyroNW2SwSQffOmhAevOJx02X5+b/Iv3+tLlHy5L7rku/ZwECEIAABCBQKwLO8ieaiqPenIrBivhTqxmhXQgEl4CKxbffZYWfU96WEUVK7fHxJmX6w49EZc3aiDz6eFROmptSoUutqAL7v/BiRP70F/uDOHdOQuadm+mbE39M5AcKBCAAgYYk0BBuXzqz/czj0APHje4m/PhnfdyYEV2EH/82liEAAQhAAAJBI+DEn25uX53BdccIGkP6A4FGIXCHEX42GXetgw5MyllnZESR3oz//POsxc/8e6KyJCDuX2rV5ISfE0/oKvzoGNXKySRC9DKPIpD3ZtY5BgIQqHcCDSP+1PtE0X8IQAACEIBANoGUN7Ok3b6arXsDNzbZpHgPgcYmsHBxVJ4yKdq1nG/cvfpapk1Npi1+/mICQD/9bG1vKXa0S9rVSy2Rzjsn9xid9Y8vyW9fUXA8BCAAgboh0BBuX3UzG3QUAhCAAAQgUAKBRNxa+OD2VQI0doVAgxFYvSYif73FijMqiowba0XivmI49+yEqJjywINREwMoKhpLZ/ZxCZNgRbzMWppqXdPEDx5cnvYK9Xf+3THZu1fkiMOTov3KV7S/2i8N+jxoYOX7la8frIcABCBQCwKIP7WgTpsQgAAEIACBMhDIWP7Ymxhi/pQBKlVAIEQENCvXH2+0MXDmmODH6g5VznL6qVYAUvcv989f/4wjk3LpuyobFHrRkqgsfSEi+vt3XgHhR/vVz7OOjHhClb+fLEMAAhBoBAK1tdFsBMKMEQIQgAAEIFAhAt1i/qQe6eD2VSHgVNuQBLbviMjadRHp7KzO8Le9FfGsafoaS2f7DuMKdWNU2neKydyVFM3uVYmiblYXXWDr1pg6gweL9O9vW9KU6y4rYV/b1phFjzzW9dZl1y6R+XenrJqM8DN0aGFrnrTbF0Gf+zodHA8BCNQhASx/6nDS6DIEIAABCEBACSRSD9Rx++LzAIHKEfjeD63ljAZJ1ixZlS6PPWHTqGs7h0/r9CxaSm1z3z4VfmKyeUtEDjk4Ke+9rLLWN5oBbNYxXVPH//K6mKjLmQpA0407Vl/KHuPS9eTTUS9Ys8YuOvmkhGib8++JyS7jxjX1sKQcb1zOeiqIPz0RYjsEIBBmAl3l8zCPlLFBAAIQgAAEQkYg4/ZlB9bkUr2T7StkM81wakVAxRNX1prU5tUoGzZk2nlleWa5lLZvuTXmWSuNH2eFn0jvqimlSS+blv8AtTbS8vLLfb/dWLjICj9a31tviRdj6OpvNMmiJRGv3Z7cvfQ4LYg/lgN/IQCBxiTQ91/jxuTGqCEAAQhAAAI1J9DN7YtsXzWfEzoQLgJrjOWKKyrEVNr1Sy12Vr3ua3NZ6Zfq9y+IyvMv2jrec1ki7YLlxlGtVyf+qOVPsm+GP7JocWo8l8bl0ovjMmZ0pkIVfkaMyLwvNL60+NNRaC+2QQACEAgnAdy+wjmvjAoCEIAABBqAgIulEU3dHxLwuQEmnSFWlcDqNZnm9Pv2yjLjwnREcUJD5sjil1astCJH6yCRnSaejbZXSnltRUQWPGR/ED70/rgMHVK5vvbUrxHDk3LghGTa9euIlCVQT8dlb9cxrTfWUEOHSJr9jKPiXnp5dSs7YU7P7l6uzn79lIcGfFautWPj+sMrBCAAgWoSKP1xQjV7R1sQgAAEIAABCOQl0M3yJ/VIh4DPeZGxAQIlEVidcvWaNtUKBa8sr+ylsxN/Zh+fkLEHJL305ctfK04AUquk2++0/dPYRIdOqb244bi91AfXr4WL7ZiOObqryKMxf971jtJiGfVLucZqWnoKBCAAgUYjUNkzWKPRZLwQgAAEIACBKhJIx/yx8WhFM+1obA8VhZxVUBW7Q1MQCBUBdcFavz7ifafOPN0KD6Va4pQK5LWU5Y8GadYgxlqKbfP2O22A54kHJUWDUwehONevl1/OL2Bt3hyR502q9vseiMrLxkXMX3aaTGUu69nRM/suZqXdvhB//JhZhgAEGoQAbl8NMtEMEwIQgAAEwkcgne3L9yhHXb/0qbZa/7S0hG/MjAgC1SKgLkVaJhjXJY0xc8CYpOd+9KqxxJkyue9CRPY4tm6NiAohAwaIHHRgUmLme73gIRV/onLhvMJizsOPRuXZhaa/5v8Letg3u91Kvh9pYvFMGJ+UNcaC6iUjADkxSEWd+xbEPGEn21LxvHMScuIJdrzO6ucIky1sWA9p3IsZB+JPMZTYBwIQCCsBxJ+wzizjggAEIACB0BPIdvvSASP+hH7aGWCVCKhgoeVAI15oUUscjT2jljiVEH/8Vj/a3njT7vBhSdm6LSKrV0fkQCMIudJprPuWmwDUGg9HXcVcVjIViVSkClJRwccTf16JGvEnLtveisgNf4p6LLWfQ4eK1+fXTaBrTel+1902s9dJcxOycJGdg2NmFha/ih0v4k+xpNgPAhAIIwHEnzDOKmOCAAQgAIGGIBBP2BsjtRBwJR302Uv3HqybQNdHXiFQDwSc5Y8GLdai4s+DDxtLHBP3pxLWNS7ez2Tj8uWKtvn4kxF52Qg9TvxZuUrFk5jsNW5prgwcKHLaKQmZfVx5RBJXbzleDzfxku65TzzLn00nReQPRvjZsiXiWTe96x0JGW4CQ7vyxFNRueOuqMy/x7iAGZFNRS21HnIucG6/3r6mxZ8O+9vZ23o4DgIQgEA9EkD8qcdZo88QgAAEIAABQyDt9hXL3Dw1e+neI57bF5AgAIHeE3Bp3tXtS4u6Lw0zVirb3hIvg5UThXrfQtcjnfij8X5cOcwTf0SWGSHk7DOMtc+rKp7EvLheus8ZpyVk8iE2q5Y7JmivI0cmZfy4pKxdF5EfX2MDlGmf3/fuuDgxxvX5hNkJL8aSBq5WSyAt5Yj14+pv6WfZEvDZEeEVAhBoJAKIP40024wVAhCAAARCRSAd8Nlv+ZM6s2fH0QjVwBkMBCpMYMNG64KkYs+QwZnGph6WELVOUdevcoo/bxi3rj17REYZocRvCaNWQGrVo/3RFO73L7Bf9lnHJOUdF5WW6SoziuovqeuXij9a1Irn/e+JeyJPrp7MMZnONHD9bXfYsWZn+cp1TLHrmvvZPRF/iiXGfhCAQJgI+C4XwzQsxgIBCEAAAhAIP4F8MX905Ig/4Z9/Rlg5As7ly1n9uJac+9Erxg2rnCWX1Y+r37XphJ85xjqmnoQfHYcL9HzkEUn5wHvzCz9uzOq+dtH5CZlxVFLaWt3avr+S6r3vDKkBAhCoXwJY/tTv3NFzCEAAAhBocAIZt68MiEzMn8w6liAAgdIIrFlj98+27lF3pYEmG9cGE/j5Jz+PydRDkzL2AP0nXSx2SmtNvKDNeozf5cvVodZGCxdZd6m3nZiQc84KXlwf19d8r2rRdPqpCe9fvn2y1x9vBKCph2Wv7dv7Fix/+gaQoyEAgbomgPhT19NH5yEAAQhAoJEJ5HT7MqnetWD5YznwFwK9IbA6lelL4/xklyOnJ+SpZ6KeAKQikCsD+pusVZ4QlPSygR08yaRrt5qN2yXn6z4TuHlVKr5NTvHHCExazylvK008ydlYDVeq+FNqGexzuSv12Fz7uxhD+wn4nAsP6yAAgZATQPwJ+QQ32vA05emfb47JoZOTcsnF9eML32jzxHghAIHyEMDtqzwcqaVxCew1qcUffjQq+ztELjjPihO7d4ts2hSRJnOVnEv8udC4I50416R9Xy/y5vqI92+9ed3RLqKZuPTfY0+IDDAWQhq/ZvZxSWlt7S4iKfUdO0RuuNEqRJMmJqWlpftcqPDz7kviadep7nuwplgC/Qj4XCwq9oMABEJIAPEnhJPaqEPauVPkb7fGRC/aFi+NyAlzIl52iUblwbghAIHwE0ikHqRHfRH8mlNn9k7vyXbuG86+klErBb3BPXRKMufNcV/r53gIVJpA0nw1VPTRf2p5o+WNNyJy4byE7DaBl7Vku3zZtfbv8GEmMPMwkSMOz3zH2o3448Sg5xZFZNs2G6R5wUN2v2OPTsjEgzICz8LFEblzvknZbgQoFX3mnZvfMsbFzPH3geXSCaQtf/aXfixHQAACEKh3Aog/9T6D9D9NQIWf7dvTbz0Tak0tSoEABCAQVgK5LX/0d6+yqd5vMKmm95gb1gceFPnG1Z1hxcu4QkrgxZcicocRXdTqRsswI+Ts2mUteH7561jaVSuX1Y89IvfftjaRtrakHGbctE492VoBPfV0VF4w7WmbL75kLXw0RpCKRK6ogDTvnLgMGeLW8FopAhoTTTOJqVusCoC6TIEABCDQKAQQfxplpkM+znvui8oyk3lDfcNPMFkw7r436ok/J80N+cAZHgQg0NAEcos/Fom6sVSqqPCjpcney9o3/IVAHRBQ65w//tl+cNUK52QTR+cwY8Gm5c75UXn8yai471Uhy59ihqoxfw6eFPdiA7220gpAmtLdCT/qVjbvnIRoYGNK9Qio9Y9ae2m691xudtXrCS1BAAIQqC4BxJ/q8qa1ChBYYly81GxbyzsvisuoUWLEHxM80bgkUCAAAQiEmUBOt69UwOfOChnk6NNyV4YP971xK3mFQJkJ6MMdtaYpR3llub1eGD5c5GMf7RobUN2uDjowKbfdGTOWQCbez4TytDlmTFL034kniCcsqQC009Sv4tNgYy1EqS4BTfeO+FNd5rQGAQgEgwDiTzDmgV70koDe3Pz1/+wTvHPPTnjZNbSqUaOSXrDG1WsiBX32e9ksh0EAAhAIBAFnoeDPKJRO9V4hy5+16zLCenlujQOBsiE7sXlLRG69PeoJHf/w8bi4z04hGNveisiwodWb+Vdfi8j/3hDzYvHMNsGT+1qWGyFJi6ZMz1WmH5E0AlCnPPRIVFoH5dqjb+v0u6oWQZTaEcjE/dHPAnNRu5mgZQhAoNoEfCEiq9007UGg7wQ0u5fe/Kjp9ElzMxdymjFDi0ud2veWqAECEIBA8AjUItW7X/zZuzcjBAWPDj3qicALL9rA3RtNZqtbb7cPUno65oYbo3L7nVHZkwqK3NP+fd2ubt1abjNtLlzct8tWvV5Y9qr9zB52aOaaIbuPGrvnAhP4mRJOAmT8Cue8MioIQKBnAn07i/ZcP3tAoKIE1HRay4kndL1ImzTRNov4YznwFwIQCCeBRNz+BkZ99+0u21eHl+0r97g1JbWKOL2JC7TOZ/mjWYoo9UtghYlD48qiJRF50gQnLlRU8NGU5rrfD37cJE88VXj/QnUVs03bcfFxdP+/3hKV541g1duiwo8KQAca1y7crXpLsf6PS1v+VMg6sv4JMQIIQCCsBCp71g4rNcYVGAJO/FEffX+ZNNGKQYg/fiosQwACYSOQtvyJZX4Dm5vtsmazyVf+6wdN8vNrYzL/7tIvA9auy9SqbTjXs8xaluqBgAa7XZmKjXf+efacqRY9a9bmF1fUldoVFf7uuCsqv/hVTFanHsS4beV41fofWGA/n5e9Ky6nmMDMWm78S8xL8NCbNpzLlwvw3Js6OKb+CaTFH9K91/9kMgIIQKAkAqVf9ZVUfWbnPXv3yT9++fvy0BNLTGrFzEVqZg+WIFAaAb3pySf+tLWKF1xRb0xefyNzsVpaC+wNAQhAINgEnPAS853NXdyWjjwBnxcbCw9XXl7mO9CtLPBqTuWiLkJRc9jAAXZHrH8KAAvwJs0+pUWDDmuWzNmpjFMaAyhfcefck09KyLsvicvIEUlPLNL06I88lv+4fPUVWn//g1HZbSyNNNDzUUcm5awzEjJ3jhWAbrgxJltMvKJSy7JUsOdyBY8utX32DwYBxJ9gzAO9gAAEqk+gvGfqAv2PmivF19ds8ASg8z/4ZfndX+42mQ6q5DBeoF9sql8C+qRRdcRxY5PSv3/3cfQm7o+KRc8ujHqBHvWikwIBCEAgyAQSqWRFpQR8fm5R5tSvaa/9YlBPY3UuX+PHJWVASvzZQ9yfnrAFcvsKEzNPy+RD7AO5C89PiM6rulnlc/9ylj9qbXvk9KR85lNxTzjSeu6+N+rF5dHlvhZ1SXzCpFzXcsapVvDRZc3GdahJy66i5wNGHCqlqHCl7o6a5WvsATyELIVd2PbNiD+lC4hhY8F4IACBxiJQ2pmzD2xaTF7F23/3n/LL7/6TTJ40Tr7zkxvk9Es/J9/84W9lxes+G/I+tMGhjUXAPYHMdvlyFPKJPxrg8rY7ovL4E1F5ZVlENNuJmr7fcmtMvv3dJvMalXvvj8pPftYkz7/AhYHjySsEIBA8As7tSy1xXElb/uRw+1KXHv29a2kRca4+fjHI1ZHv1QV7HmdEgv797Q00lj/5aBVer1ZUKqZs2GjSfu+s/rnGxfs55OCMEHLeOVZoUXeuXJZj7rx7oC8Fun6OLnmnVSGfMjF6NDNXXz8Tzt1LLX30s+YvFxmRSsvyVOBm/7ZCy27/w6ZkxKRC+7MtvAT6pVxj9+H2Fd5JZmQQgEBOAlVN9R6JROTE44/0/q3bsEX+dMv98vub75U//u1+mTtrunzwkrPllLkzJWr2o0CgJwLpi9CseD/uOL/4oxZC+rHSC1PNGFKoHGCeCG7eHBF9In7jTTF5bWXSPG2Mi9EvKRCAAAQCRSDt9pUz4HP3rj630J5fZx2TkONnJeT+B6KeGKSi0ITxXW+yux9tg0Tr+vHjxPxO2j36eqOfq52wrtMHDpqxav2GiGzd2nWUQ4daS9bjjk3IlMk9z0XXo0t7t3VrRDaZ85xab/kfoKgLmP5Td2mNj3PE4Zl+6DlXP29jRidl4MCu7c2ckZShQ+Lyl7/aeDy//X1MPvbRuPgt0roekf/dkucjXkYubeOM07oLNUNNmnm13lF+696MeNa/+WvLbFmWSvGOy1eGSaMuOcufDsSfRv0IMG4INCyBwnfBFcKSMHfiy1aslldeWy37jOzez6QmWbdhs3zqKz+Uee//Z3ng0YUVaplqw0TAiT/+C1f/+AaZC8exxiVML1Y18LNecDvhRy+y5xxvL7CHDUvKkMHiBZO88h/j8sm/j8vVX+kU9wT02eci8pOfNnlikL9+liEAAQjUmkAidW9cjOWPZmpSt1Ytxx6T9G7MjzUikBYnCnlvUn9UBM8uabcvn7st4k82pdzvldMf/hSTF1+ywo8KI85tWS2x3npLvG0qnFz7m5hnEZS7pr6vdfF+Jvusflyt6lalZfmrXS8RncuXZsrKVSZOTMrHL4978aBUTOxtDKAHFlglU929lEuuMskIVFpeN+f2YoqKXerOpvVVWlgrpj/sU1sCTvzZl8M6srY9o3UIQAAClSVQVcufrW+1y813PCQ3/t8Dsnb9Zhk7ZoR85uOXyCUXnCrDh7bJE8+9KNffeJc8tehlOf2kYyo7cmqvawL6tE8vpEeYp38q3OQrav3zptlXRZ9NJkipljNPT8ipJ3d/mphdh6aP1wvjn/w8JtvMRfmKlVGZOaPn47Lr4T0EIACBShBQ4cc8S/Futv0Gs+lsX51db4zVvUv3n3pYUkaPsjfPKgI99oQVhc4+M5GO43OfybL04ENRed+743L4NLvvjh1GoNguXoy1UeZ4F2tt7z5tx+5TiXGGpc7njPCm/PXG8xN/F/csaPxj03PUiy/bBxVvGMubn/4iJhddkBC10ip3cfF+DknF+/HXr+LPvfeLZ33jX59+4OJz+fJv1+UhQ5LygffG5Xd/iHkxezQwtF+YzN4/+/0C85nbYix61K1stnlAk6+oddJziyKehdLcE/LtlVmvKd61YPWTYdLIS078wfKnkT8FjB0CjUmgauKPZvs687LPGx9yExzw2CPkqivfL6efeLS5KMg8WdL1+q+jM0+KksacI0adg0D6IjTPE0h3iIo/j5sbGyf8aKrYYoQfd/yYMUnPNeLpZ6OiaXEpEIAABIJCIJfLl/YtX8wfZ91z7NGZm2oVgVQMUnckFYdU8L7dxHtxWRLvuidqAuzGpclcLbh4PxoUWMsAL+aPFeK9FfwpSEDFCi3vekd34UfXq6B2qvl30tyE3HpHTBaa/TUGnQbkPvdsG4xZ9ytHKWT5o8GQnVuVJlZwlj4unfuBBxbugYpHB09Keu6Ej5ugzTqeYsrWbRG5P5Xa/fQc7l7+OlT80eI+p/5tKrD9ylhODR1imY4amZRHH7fXmqR495Nq3GUn/uzfb7+TjUuCkUMAAo1GoGrij8bxec87zpD3mn+TDjygIOdmvcqkQKAAAXcRms/lyx3q4v7o+zkmla2mii21pC8SMA8uFR37QwACFSSQy+VLm2tKxSfT7IWuvPyKjfGiqbmdJY/bpmLQK8tiMt8IPa7ofhoMf5u5Ib/r7qhoJii1uNTixJ/+KZcc3L4ctfyvanmy0Vj2DDduxv44OrmO0Eugi98elwPHR40IFPXcln9+bUxGGhHj8KlJ0QDNo0aqBVbSsyLKVUehdSqY6Jyp2KRuz7mKBkV+4qmoZ/2j4o/GB9q5S2SwsbQdMTz3Mf56NFDzylXW+qdY8ccFeT7axA+aksMiyV//cNMHdd9WVzmNnzTSCD2uLFkaFX1A9MZqXdP15v7QQ0u/BnD18hoeAgR8Ds9cMhIIQKA0AlVTWVpa+smXjbVPrUrcpETZsHmbDGkbJIMG5sgLbjqm29tMoJiBAzJO5pu3bpfHn31BLjr7xFp1nXZzEHCWP+6JZI5dvFUDzFR/5apOExiy+KCQ2XXle4qevR/vIQABCFSTQF7LH3NmVzcwNaJVKwiNdaKxZrSom1d2UTFIXWjV3UaLBhw+f17Cs5hU16Onnol6cVKc5Y/LvtQ/leod8cdyK/R3YSrW0jFHd+ef77jjTEBuFSseeTQqL70c9RIRPGxEmIcfzRyhxtPqfqfnOhWD3LIGSlaxKFdxWb5yxftx+6v1zhNP2YxaZ54unpii2w4q4PLljtXXaUakUtctjROkaeM1xl6hsvy1iCxeGvE+tz1Z/bh6NO7Pores69eRh7m1IktMPVpUpFQLJBWuNm4SGWbEooGpz2xmb5YakUD6oR4W3Y04/YwZAg1NoGriTy0p/+4vd8sPfvkXL7i0WhXNPmaaXP2Fj8iEsaO8bmmq+U995UeyZt1G7/35Z54g3/ryx0T3XbZijVz9nesQf2o5gVltbzFCznYTe6J1kKTjVmTt0uWtPp3WoJq9LVwk9JYcx0EAApUkEI/bm9xYxmAn3ZzJoyD7jeWPxlB54EG7g7p4nWAsIHOVWUbwUZHh/PPiMuMo+3up7j8aB+ie+6Ke9U97Kh25ZvrS4ix/9uy1/bBr+ZtNYJsRKF4wQZ61+F3usvfL9V5j2l1ghDj9p6KNs+BSQUNFN3VH3r3b/vNbuWzfEfXiCuWq04k//hTv2fup+KPnPrX2Uuuv1Z4VjYnF04Ortb+euXOs+POEcf3KFn/Uas3n9S/O6ud0E+R5mMnmVUxR169FxiXOH/RZXcdUSFLx86MfincJGO3E0mLqZp9wE+C6Ltzzy+ggAIH8BBpC/FFLn+/86z/I3OOmy5sbt8jn/u3HooLQv3z6Ax6Zb3z/ejlk4li56dpvmEDUm+TDn/m23DL/UbnUBKKmBI+ANeXump62kr3E8qeSdKkbAhDoLYF4wt4kR61RT5dqVPjR4oSf2ccZa57z8gff1e0q+gxu63rjrQF7XzU30ytXWfFCxYghg+0+ammiJayWP+3tIitfj5rYMcku6dC9QZfwx8X6mWn4trWVcGDWrirWZAs2Kmgo/71GgDOhFWWPWf7t/8Y8i5vHnoiKJi7wF93XxcmZ3INrlQpAL7xoxBTjsvaGseDR0pOrtb+tI6cnjJWSzbKlWeZmHpUw1j1RzzLHfZ4045kTZdTV8LRTuvbXX1/2smYX0+LGo8vO6kc/y9mZwnqTdl7rpISPQFr88bnGhm+UjAgCEIBAdwI5nhd236ne17zr/FPkrFNmee5eUyaNl7fNmSGPPrXUG9a27e3yzJJl8pHLzvXcvQ49eIKcdfIsuefBZ3IOW9PQX/qJr8niF1/LuZ2VlSfgXL5KuQjtS6/6peJn7O+wF799qYtjIQABCJSLQMJZ/uQQf5xrllpAvPvSuBezx29pkd0HvRnKFn7cPueZYMOuNPfLiEPpbF9GUAhjuef+mPzl5qhc++scgEsYcNrlqwJZu1TQGGSsYEcY4UTdnDRWznsuM4qQKfc9EJUd7V3PWxpIWou6+rkHG96KHH9ccGQVrzYbSyP9jLh4Tzl2z7lKY/9o0cDV3/5Ok/fqhB9d74QfXVarn1KKikUqRrbvNBZK6+3nMi3+HFlaXaW0y771TyAt/uD2Vf+TyQggAIGSCDSE5Y+fSMIEQHjSpJSfOuUgb/VGE+cnadZNnDAmvZsuL31pRfq9W9DYP1/8+jXylc9+UGYeMdmtlli068VVegMLFSGwerXVLCdNlKqwd08PO80TIua691MaMXeh+lWBYe8ZcmTjEFDRJmq+MAW/L0l77lG3r+z9PvkJE8R5ucnUND7piQN+l6BSKU4YL3LJOxNetq/jjk2m2xo00La/z6R6z26/1DaCuL/GS0oXw7o3liMax2aHsSBS0eTQQ7Q2yyxdbwUWZkwXY7GTlOdfMNmzjACkc6flnvujsvR56xJ11umZeczXhWkmC5wWF+hbH7iUOs+zjhF55DHxYu50mBhUarmkAZ31n7P6cQKQvSEvjY8mdVDGr60UY1VlRCoTpFwzlU07THteWl16BKUxCLjQnh0m21epn+kwENJvho67y29cGAbGGCAAgR4JNJz4892f3CCvr90o/3X1Jz04O9qNs7wpGpDalRZj6tG+y6536xY+v1w+89X/9lLUZ7uDjRySCRDt9ue1MgR0WjZu6hS1xjlmembOKtOarXWkF3/APElNRk1GkZQZUCUbDGndmvEvaf4b2L9vT9FDiodhQaALAf2+NBtVJzkg/2l67y69OTdxTfpptqPu56FRx3epsk9vzjm1++G2Z50mnp7kbL/7EfW1ZttWtaCxAsjeXf1k4oGliwlLl9o6TplrsnVV8fzx7neo+BMXtdo5aXY/2bAxaeI/WRHo7z8SkyMPy/+5crOkGbSmHBKXV1dYBtOm9G4MF52bNC71SZkzyyReOKB0hq4/uV6nT1VXMo2HZG5mPXUuIXOP13N1z+PLVR/rGoPAQO/ysVM0I2Ku386wU1DhZ2hrda6hw86S8UGg3gg01Nnx13+6U2742/3yo299WiZPshErB7cN9OZsnwuQYN7psmb9cmW/eVx1xVXfl4PGj5HLLux+BbxhW0ht3h2AAL3abDMxGWjM3KvFfZd5qm0uK40gaDLGbcNBvLcfhyGDmqUznpRde83jXwoEIFCQwPC2frJ7X1z27rcuPLl23mQCCetvUyJZm98me9pskt17qvd7nItDpdatWZe5RHrp1Q7p32rFk2LbU0uXl5bZOg6dut+cP4o9sgz7mWbPPD3quX79+BeZz9BFFyRk/EGdRfdl0qSoEX+ste3wkR3mOCsEldLDicbiSf9pKTeD4aPsd2DpSwlPhNQ2Jk/pXT/1WEpjELDWZk1enKxqXUsGiezoof1la/s+75osSP2iLxAohsC4EaRtLIZTvn3sGT3f1hCt//F1N8v/XPdX+cm3PyunnjAzPbLRI4eZrBAazHBDet2q1etlzKhh6fe6/crLL/aCRX/9e9en17NQfQIusOjwYaVfgPa2t843XJ8QUSAAAQgEhYBzl+mNO1I5xqAWmNq2/jZqWvkwlfUbIqIZqVzZYJOBurdFvW41LkhaRpmU6yZ5aNXLqSdr5qxMs2eenpDjTfr4UsqUyZlzbbXi7JXSP81g19Zqs53p90GDWGssIAoEChHQ3y39p9/xsP12FRo32yAAAQg0hPjz7R//Xn75+9vk61+6XA4cN1reWLvB+6cWPsOGtMmsGYfJ9X+eb7Jk7JNXV62Vex9+Vs4+5bj0p6O5KSYfuvQcuebbn5fb7n1cfnTtTeltLFSXgBNgnCBTjdZdplM57QAAQABJREFUUEyfcVg1mqUNCEAAAgUJOPEnV7avggeWcWM66LNx/QpT2WDEHy3u91/FoFLLlpSlj8agqVWZd661+tGsXyoGlVrGjU3K1f/aKd+42rhbB9RLRFO+u6JZvigQKIaAi/awn6DPxeBiHwhAICQEavAsqvrkNDNXPJ6Qq7718y6N/+aHX5bjj54m//b5D8un/uWHMnveFZ53/7zTZ8vbzz0pvW8klSLl6OlT5Hv//kkv9s/oEUPlfRefmd6HheoQ2G+C82mp5kWoy/algQEpEIAABIJCwFmmaMDnWpX+LcaVc5dJM25SjbcOCs+N9/qUMfAMk5782eeiJmZO6b//W7faY0YMrx2XaVOToq5epVr8+D9P5vlXoItmOnPBnWeQ5SvQcxWkzul1pLqsaibXganYXkHqH32BAAQgUAkCDSH+/PGnVxdkp+nf59/wXVm3YYsMbh1oLmAzvoQnHjddnpv/i/Txp809Wpbcd136PQvVJbAv9YSmny/dcKV74NrC8qfSpKkfAhAohYCz/KmV25f2NW35E7LQd87SZ6rJePXSy2IELvGydg1uK36GtqTEn1pa/mhv+yL8FD/a2u35thMTcuS0JolE454rT+16Qsv1RMBe20UEy596mjX6CgEI9JVADZ8X9rXr5T9+3JgRXYSf8rdAjX0l4E7Szhqnr/UVc7wz+3cuZ8Ucwz4QgAAEKk3AGLR6paaWP/1tH1w8tkqPuVr1O7evA0aLjBltLXfcumL7sHWr3bOaMeqK7VuY9msxie6mT4vIhPG1s7AKE89GGYuzIHfXlcWMW1Ojt+80ORYzMdSLOYx9IAABCASGQENY/gSGNh3pMwF3knYn7T5XWEQFKv6YmN9eUFM98esyBQIQgECtCSRSNyCBiPkTIsufHTtEdhpLn4HGCHjo0KQn/qxcFfFcvw6dUrzA4Cx/RtQw5k+tP6O0D4GgEnDXke66sph+vrE6Ir/6jfWD1JhBA0xi4IEDknLIwUk556zSY2oV0yb7QAACECgnAcSfctKkrooTcNY37qRd8QZTDagApBcI2n61267WGGkHAhCoLwLu6XMt3b4G9FcxxMb8kZDEzXAuX2PGWKFnzBj7uSjF8kfPFSoi6dwMq2J2yvr6BNNbCNSOgLMgL0X8Wbsu8/RPwxDov7feivBQsHbTSMsQgECJBBB/SgTG7rUl4E7S1RZg9CJB29Z/1W67tsRpHQIQCCqBeMLeiOD2Vd4ZcsGdD3Dij3P7KiHdu7P6weWrvHNDbRAoFwF3LWcTiRRn0efEn3dcZOJMHZEQtQT63R9isi9k2Q7LxZh6IACB4BEg5k/w5oQeFSBQi2xf2p3mVIDpDpMVggIBCEAgCAQybl/F3bhUos8u4POeEN38ZCx/LLF0zB+T8Utdf4sp6Xg/uHwVg4t9IFB1Ar1J5uHEn/HjkqKxppxAvI9ssFWfPxqEAAR6RwDxp3fcOKpGBNKWP81FXoGXqZ9p82Bjyk+BAAQgEAQCBHyuzCxsSKV5dzd26vY7cmTSE36Kdf1ylj+1TPNeGTrUCoFwEMhY/hQ3Ho0DpqKuHud+G1QA0oLlj+XAXwhAIPgEEH+CP0f00Ecgk+rdt7IKi+mMX8btiwIBCEAgCASCEPOnvxfzR2Tv3nBYRXZ2imzcZMfibvB0rseYrF9anEuYfZf/79aApHnP30O2QKCxCZQq/qxLxftRqx9XvDrMz4U+mCzWKtAdyysEIACBWhBA/KkFddrsNYH9Kcsbd9LudUUlHujac+2XeDi7QwACECg7gUQquUy0hmdy5/YVllTvGZevpPi5HpCK+7O+yLg/W1Jp3rH8KfvHngohUBYC6eu6Ih/qrckh/mhHNOuXFmeZbt/xFwIQgEAwCdTwkjGYQOhVsAl0pE7S7qRdrd6mLX9w+6oWctqBAAR6IBAEy58BKbeHehB/9ph09E4wy4fWuXUdkMrw5fZzmb/cdrc+3+vWbdZ6aDgxf/IhYj0Eakog7c5fpPizbq39Tvstf3QAGdcvu72mg6JxCEAAAj0QINtXD4DYHCwC7slKtcUf155rP1hU6A0EINCIBIIg/tST5c+ixVG59/6oTD8iKdMPT8jUwzLuG+7zs97F+0lZ+rj1pbh96XkineZ9aPc2XJ28QgACtSOQvq4rMpFHJthz1z63eAlBIl7a965beAcBCEAgeAQQf4I3J/SoAIF0tq8qB3x2lj/7vYsELuYLTBGbIACBKhFwVix+96QqNZ1upp5i/rz+RkQ6jPXmosUR8y8mgwaKHH9cQo6emRSXkn29yeilxVn6uIEOG5YUFbra20V27hRpbXVbur86qx9cvrqzYQ0EgkIgne2rCMsfDeC+a7dIW5vI0CxBN2P5E5SR0Q8IQAAC+Qng9pWfDVsCSMBZ3rgnNtXqYr+U2KQ3DhQIQAACQSAQKMufOkj1/vrrVtg55uikjD0g6d3MLXgoKj/8cUzuX2Avh5xblz/Ys5trf8p3ty7Xq4v3g8tXLjqsg0AwCLjrSHddWahXa9fardkuX7rW1eMSkhSqh20QgAAEak0Ay59azwDtF01AMym4gMvuZFv0wX3csZmAfn0kyOEQgEC5CQRB/FGryFhMPIsazZTVFNCrijfX2yf3w4aKXPz2uDcV6sbxwINRWbY8IioCPfRI1IsJNNg83c9l2aPij1oPacavyYfktwB1mb6w/Cn3J576IFA+Au46sijxJ0+wZ+2Ns/zZXwcCePnoURMEIFCvBLD8qdeZa8B+O6sbd8KuJgIXGND1oZpt0xYEIACBXASC4Pal/aqHuD8q2miZODEj2uhT/A++Ly4f+WBcJoxPpoNBZ7t8eQeaP2NSQaBXrykc2FVdRLRg+eNh4A8EAknAXUuWS/zZt6/w70IgIdApCECg4Qgg/jTclNfvgN0J2p2wqzkSJ/64PlSzbdqCAAQgkItAECx/tF/puD8BvvlZlXL5mnRQRvxxTNWK5+8/FpfzzkmIWjLlcvnSfScfbI994cWIFMputjWV5t3FEXLt8AoBCASHgLuWLOa6LhPsufvvhw34LAR8Ds7U0hMIQKAAAcSfAnDYFCwC6WDPKResavbOuX1h+VNN6rQFAQgUIhBP2K2xGp/JB5hAyFoKCSJ2j9r9zWX5k92bE09IyOeu7JTDp3W/wdN9hw9PymGH2m0uRlB2Hfo+4/aVayvrIACBIBBwsRzdtWW+Pq0zLl8qtI8amZQBA7rv5dy+9uH21R0OayAAgcARqPElY+B40KEAE3BPZ9wJu5pddW3abF/VbJm2IAABCOQmkIhbN4OoiblTyxJ0t6/1Gu9nl4jG++kpDo9m81EXsHzljNOs4vbEU1FZs7a7m4eep3aYjGBNZk6yswLlq5P1EIBA9QmkLX96SOSRsfrJ3ceW1ANJAj7n5sNaCEAgWAQQf4I1H/SmAAF3YnUn7AK7ln2TS/XeUURK0LI3ToUQgAAEchDIWP7kFytyHFb2VUEXf1bliPfTWwjjxiZFLYS05LL+ycT7qe2c9HZ8HAeBRiHgriXdg8V84167zm7JlelLt/RrsdsJ+Gw58BcCEAg2AcSfYM8PvfMRqFWmL+1C+iKhhydEvu6yCAEIQKCiBAIT86fFCh179na3hKkogCIrdynec8X7KbKKLrup9c+gQSKvvhaRxUu6Xkal4/0M73IIbyAAgQASSF/bFXiwl7b8yWMRmHH7CubvXwCx0yUIQKCGBLpetdSwIzQNgZ4IOKsbd7Luaf9ybneWP06AKmfd1AUBCECgNwQSNmO54PZVmF45LX+0JT0HOfcvtf5J+ox8nOVPT+5lhXvMVghAoBoE3PWks/7RwPA//UVMbr8zKkufj8jGTRHZsDEiEaPr5LP8IeBzNWaKNiAAgXIRaCpXRdQDgUoTcEH53Mm60u3563fZvpwA5d/GMgQgAIFaEMi4fdWi9UybQXb7Wr/BxvsZWkS8n8yIel46flZCliyNiAaS/s3vYnL5h60St3WbPZY07z0zZA8I1JqAu57ctz8irZKUhx6JypsmRpj+e/LpTO9U+FEBKFfJWP7k2so6CEAAAsEigOVPsOaD3hQg4J7MuODLBXYt+yaX7YuAz2VHS4UQgEAvCQTG7SvA2b4KpXjvJfb0Yc76Z+UqYy3wy5i8siwiWP6k8bAAgcAT6NfPmu3p9eULL0Y8V07t9KknJ7zMfk7Yzmf1o/tmBCR9R4EABCAQbAJY/gR7fuidj0AtAz47wYlU774JYRECEKgpAWf5E63xY5wB/e0N1N59eR6N15BSMSnee9u9gyclPYuf2+8y1gJvRuT3f8ykXdO08BQIQCDYBJxVt4o/DxqrHy3zzk3I3Dk2qLu+X2e+224/fZ9dnOUPAZ+zyfAeAhAIIoEaXzIGEQl9CioBJ7y4pyzV7Gc65k+BoIDV7A9tQQACEHAxf2IZzaEmUNzT8b17a9J8wUYrafmjDasAdOUVcTn7zMzNYpN5rDZ0SMFusRECEAgAAXc9+chjUVlvXL1Gj052EX60i5rhb+TI/GJuOtV7AMXvACCmCxCAQMAIYPkTsAmhO/kJpN2+TLDNahd3geAEqGq3T3sQgAAEsgng9pVNpOv7LvF+RuS/eet6VO/enXxSQmYclZQHFkTEZQfqXU0cBQEIVIuAu7ZTl00tp74tI+IW24eWVLZDZ51e7HHsBwEIQKAWBBB/akGdNntFoJbij7pVNJmn650mpmdnp1nmm9OrOeQgCECgfAQSqfuUWrt9BdXyp9wp3nuauSGDk/LOtye97EA97ct2CECg9gSc+KM9OeTgpBx1ZOkisXP72rev9uOhBxCAAAR6IoDbV0+E2B4YArXM9qUQXNBnrH8C85GgIxBoaAKBsfxJPfneuzdYMX/WmlgdWg6cUPoNXV8+WGOM6wgFAhAIPoE9ezJ9PKUXVj/u6LTrF6EBHBJeIQCBgBJA/AnoxNCt7gTSlj/NtbmwdgH/yPjVfW5YAwEIVJ9APGHFjViNz+TO8mdPwGL+rF5t56Ta4k/1Pwm0CAEI9IbA5EPs9eSgQdbypzd16DH9WuyRBH3uLUGOgwAEqkUA55VqkaadPhPY32Gr8Jvp9rnSEipo9kSniHTwZKcEauwKAQhUikBQAj5rQHzPLda4xAbFLVaf6GvadXXRPeCA2jwwqNS8Uy8EIFAeAifMToj+66tFt8b9aW+PyD4T9Lmtjd+b8swOtUAAApUgUOPnhZUYEnWGlUDa8qcGAZ+VqROdnAgVVs6MCwIQqA8CmVTvtb/ZcNY/Qcn4pemZtWimHgoEIACBQgRcRtdC+xTahttXITpsgwAEgkQA8SdIs0FfChKotfjjLg6w/Ck4TWyEAASqRCAoMX90uP37W5ElKHF/3kyJP2MRf6r0aaQZCDQuAYI+N+7cM3II1BsBxJ96m7EG7m+tAz5XyvJHM/Y8/0JEnn2u8NdR3SkoEIAABByBYIk/tleBsfxZ7yx/HC1eIQABCFSGgLs+JN17ZfhSKwQgUD4CxPwpH0tqqjCBtOVPjQI+py1/UrGHyjXc5a9G5MabTB55U5a/FpH3XBqXiL1v8da9tT0i994XlYR5sP7uS0yueQoEIAABQyAoqd51Mpzb156ApDtOu30R74fvCgQgUGECzvKHgM8VBk31EIBAnwkg/vQZIRVUi4CLteOesFSrXddO12xf5Ysj4W5StJ0XX4rIr38b8wQgzT7x+JNRuccIP87q55CDo3LcscZUiAIBCDQ8ASx/cn8Edu8W2bpVRAX7MWPK91uduzXWQgACjU6gpZ/+zpiAz/v1yR2/OY3+eWD8EAgyAcSfIM8OfUsT0CfcKoBEjWeUZm+pRWlOndydBVK5+uDEn9NPTcgLL0Zk1esR+X/fa5LWVpGdO7u2cuf8qBxycFKGD+PioisZ3kGgsQgkzU9AsCx/7M2PjflT298n95tKsOfG+k4wWgjUioCz/NkXEMvHWnGgXQhAIPgECgcZCX7/6WGDEHCCS62sfhSzs/zpa0rQ7Clbt876eM2ckZTLPxyXSRPtjZMKP8OHiWcF9I2rO2XGUUkvHakKQBQIQKCxCTjhJ2Y9RmsOw7l9BSHmTzrYMy5fNf9c0AEINAIBxJ9GmGXGCIFwEGi4u8gO5z+TY/42bN4mu7MCFmzeul1uveexHHuzqpoEah3sWcfqYv44Iaoc43/rrYi0G5FHXbzUmkdfP/qhuBw+LSlvOzEhn/lUp0w/wopB886JS6vZ/sqyiOcOVo72qQMCEKhPAkFy+VKCA/pbjkEQf9YR7Lk+P9T0GgJ1SsA9mCTgc51OIN2GQAMRaCjx5/5Hn5Pjz7ui2/SueH2dzPvAVXLWZV+QOedfIVd96+fiRKJlK9bI1d+5rtsxrKguASe49PNcr6rbtmvNndzLafmz9k1bu989QV3b3vfuuJxzVsJzc3PtqzA071wb8FmtfzZs9EWFdjvxCgEINASBeCr0VywgZ/H+LRZ7IMSfHL+rDfGhYJAQgEBNCDjLn/37uC6ryQTQKAQgUDSBGkVPKbp/Zdlx67Yd8r5PflPWvLlJmnMEjPnG96+XQyaOlZuu/YasXb9JPvyZb8st8x+VSy84tSztU0nfCaTFHxPAs1YlbflTxmxfzuXLL/4UGt9RRyZlxcqkPLswIj/5WUxOPTkhE8YnZbz5p1ZBFAhAoDEIJFKJ/6IBcfsaONBaKO7aXdubn127RLZti4iK9aNH2z41xieCUUIAArUiYAM+ixDzp1YzQLt9IaCWxOpKrq/eP7OciEdEHzK5dd23+/fV5cz+en2SPtarK7PvyBEiLeb8fPi0hHee9vf75VcismZtRLZsicjgwUnzz3pGDOiflIjvQdc4Uwel9wQaQvwZOrRNfvX9f5anF70sX//e9V1obdveLs8sWSbXme0DB7TIoQdPkLNOniX3PPhMTvHngUcXyk9+8zf5t89/WGYeMblLXbypHIFaZ/rSkaVj/njZHMozVheYdPy44m9S1Ppnxcom2faWyIMPZ34NRwwXueITneKeQJWnh9QCAQgEkYBekGkJiuXPgAG2P3v22Nda/XW/qWPHFv+bWqu+0i4EIBAOAu66K6xuX2rx7h6A5puxjZsiMnpUcb+7ep5w54x89bG+dAI72iPSvyXZTVRxNe3YYUJHLI/Kpk0imzZHvH872s3W4qbNVVOW14hRczSshd7/6Odh8dKobN/urzr/g6TT5vj3Y7lUAg0h/kQjEZkwdpSseD1lC+6jtNHE+UmatCkTJ4xJr9XlpS+tSL93C48/+4J88evXyFc++8Euwk/rgIbA6DDU5NVJHAMHRKRWvNtM9i0tiUT5+vBm6iM55eCYGZetv8e/Zr8vf1Hk5VdE3lgt8voakVdfE9liUhvv39skI4b2WENNdmhuipobVaPeR/i+1GQCaLSuCDTFzEVcv5joa66yf69dq8astfpN9PfrgFH23c6d5ft99Ndf7PKWzXbPiRNq249i+8t+5SEQi0ZkQEvMPKRxVwvlqZdaIFAMAfOM2SudHfXxu6P3RQNbmiShaSOLKL/9q8jRM0RmHJl75yeeFlnwsLk2/ULu7dlrb71d5IDRIqefkr2F96UQUK+IF14SWfaq+WfuA7ZtMw+EjDXw2WeInGP+uaIWaXfdax4YP+LWdH3VY/RBkveqy/5/+dbnOEYtkXuqS+9V1m8QWW76+/wLEe+f683YA4xF0FSRMeazsWu3eGLQXtN3Fa0o5SPQ8HdhO9rNp8uUFrVBS5UWY+LRrp86X1n4/HL5zFf/W6668v3dLIL0R5RSWQI2zk7SMxWsFe/+3kfEZtwqRx82GuV9956kDB1igj0PLe0z1GLc32aak7D+03LNtUnvx7/d3HiNL60qW0EV/mq3Iua7Ug52VeguTUCgxgT0u5LM+31JGlNqfVynF1pB+E7p75j2Z7u5SKtlf9auszczBxnxx+gBlAYioJ+7JHPeQDMenKHagPdJz+2rlr9/RRMx3xONLynmYWZP5XkjLixamjT/RC6aF5EzT+16xG13idy7wP7uaswjl/mx615d323fnpSnnxV5/CmR914SkSmHdN3Ou54JrDMPj7/zo+7inVoF33WPeHzPPTNiswTfmxTNIKxlwniRY2dGPIFFBTj1GqhFUe8F/Uw9/2JSRo2MyHHHCJ+DKk1Ew4s/g9sGeqj3Ob8i806X2wbZ9bpxf0enXHHV9+Wg8WPksguzfvXM9h27yxgERhukdCOwvV3PUlGJxBKGt3fX022fSq/o8E6SMU+w2bG7s8/NLVuhJ92YqHtCX+sbMNDcAUpENmzulHEm/k8Qy5BBzdIZT8quvX1nF8Tx0ScIlJOAWvzs3heXvfvNlVyOsn2X/f2IGIGor78fOarv1aoW8yRZnzBu2NqRzv7Vq4r6cNDra+xlzbDhnYZLMH8L+zA8Ds1DQC1+9Nyyv7M21wd5usXqBiHQ4f3UNMluY5FZD/cEalW6c0+nd03W0xTdeY+9vtT9br0zKW9uSMjbL0yIJk+++W8xc/OeEZCWreyUSRN7/t19fbX9nd68ReR/fpGUE2Yn5OwzE3ldy9SdacGDEa/dXP297Y6oLFoSlRNPSMgZpzXGb8Afb87MiyaImXxIUsYekDSeAIbVQ1HjGRCRP/w5MxdTJic9Nhon1F92dLV18G+q6HLMPFCfNcv+cw0V25cgWDu7Ptfjq95RN3QZPXKYZ43wxhpjg5Yqq1avlzGjhrm33vYrL79Y3ty4pVvMoPROLFSUQBACPpc725eLTVFssOdCgNta7Y+5ulxQIACB8BNwMX+CEvBZiQ9us79D7Ttq8zukTzbfMk8TNf7GqCJjT4T/k8IIIQCBShNwzgPuWrWS7em148LFURP3sfK/s888G5W16yIyckRSLr04bu6HRJ55Lirf/X6T/PDHTZ7wo7F7NDCvljfXF9cnrUfLccdaoeaJp6Lyo580ebFf7Jauf5c+H/HanX9P99tWDRL81DNRUfYqemhg4nosW02igucWdR9frrHce78Vd0aNTMrX/rVT3nZiwhN+dF8VeT5+eVzeYQQ6nZfhw5JyyTsT8uEPxL0EMbnqY11jESjuUxYCJmq949K363Jnp32aOmxIm8yacZhc/+f5ssc4Fr66aq3c+/CzcvYpx6VH3dwUkw9deo5c8+3Py233Pi4/uvam9DYWqkPAGWY5AaY6rXZtxQV8LtfJfa05gWspi/iT8jdvb+/aZ95BAALhJOAucIMS8Fkpt6V+h7wAkjXAvi5146FPPykQgAAEqkUgHfDZWD5WuvzslzH56y1Ruemvlb2F03PMglRSkVNPScqMo6yooG5C7UZo1995DdarQoNmntVSjPij19B7jYWUxqtTC6J/+Li9H9O4Lv4kJn6Ojz9hx/ro41F54MHMuHcbq5Xb7lQLmExZtrw4AarUzGzKY8XK4urO9Kb4pTfeiMjf/i8qP/yfJk/oynekWvY89IhlcP55Cc/1O9e+s4yw9sXPdsrnPh2XmTPqVBHLNTDW9ZlA5hvU56qCW8HGzW/JMWd/3IvZowKQLn/8i99Jd1gzdy1fsUZmz7tC3nn5V+Xk2UfJ2889Kb094jnGmmBn06fI9/79k/KrG26XG/56X3o7C5Un4ASXWoo/zamwUB0moF85SjrNewmZvvK129pqt2jMHwoEIBB+As7yR2P+BKUMTovQtfkderOMgnpQmNIPCEAg+ATUkkWvTzV+srterUSv3YNQrVstRcpRVIi5/n9j8roRH/xFhRgVZA6elJSZR1nx4MAJKvZ0etYlR023wo9anzjB3SUx8deTveyuU9tSlqIqIH3i76wAtOT57relannkf6Cg4s9jKTFIhR/t46FTknLm6baPrxQp/vziVzG59faobDZpxXsqus+1v47JH/4UM0GIe96/p/pybV+7zq7dagIi/99tagkVkyefjnqu1G5/dbW7/S7L6LRTrKuX25br1VlY5drGusYl0BAxf0aPHCovLPhN3lmeMmm8zL/hu7JuwxYZ3DpQWgcZG8ZUOfG46fLc/F+4t3La3KNlyX3Xpd+zUB0C7mRaS/GnX7N9muw/+fZ29Bs22CBsw80TFF94qd5WJxm3r15XwYEQgEAdEQii+GMv5rteqDukmlb2p7+IyZDBSfnslfZC320r16u7iB9tglhSIAABCFSTgLp+6bWqpnuv1LWqe2io41I3VxVsJh7UN0vHlasi8pqJQfnaipgce0xCTjNWPioaqAuVFmfV470xfwYNEs+FyL3XVyf+bNgY8WIBqVVPvuIs1F0GXd1PRSW1gleXthdfisgRh2fGpC5fWjQu0KiRJu6Qie9z191RWbjIxLk07anV1YXzEqJZoe57wGS9MqnMTSRr75h8f9RtzqU618DTs45JylwTLyhXqvrlr0bkJhPbSK2MtNwxPyrve3f5z2Eqcmk5ZmbSy4alVlS336n/onKAsWbVWD3PLbRubRpXqVFiG3lQ+FNWAgW+nmVtpy4qGzdmRF30sxE7GQTxp9lk2NLi+mLf9e7vWhOlX0s5XL60HncSdU9UdB0FAhAILwE1QdeSMky1b2r8N2P5070jGthTn1pu2WpuDsx1s/GmLnvZZDIoasl1AW+38BcCEIBAZQj0azGChbG+1oxXkorDWO6WnEDg6tV4N+UQf1x9Ki4sXGQtmHTdjCOTcsjBGSHG7Zf9qhaoKlCsN4KFihYq5uQrafEnZSnq9tO2VPxZvDRqxJ+MuLL0BStCqaXRgQeajGpGXLv73qgn/OixF54fl2Emro2WESY20RZjpdOTKPbEk1Zo8Q4yf55dGDH/YnKQqf8o04+DjbgyenTSs7xR8UWLbtOxvfSyjTE0+7jCApN3UJF/9Hzu5vaCeXFPPFxiOKgVk6ZDV676zxV196JAoLcEEH96S47jqkpg/377o+esb6raeKoxFX/0aYjewKhpb1/MKd3Tm3KJP60u0GqBmD/aZy196betgb8QgECtCQTS8sdY9WjRzCzZZYfPVH7Tpkj6SXH2fn1578zxhw5J/dj1pTKOhQAEIFACARf0WcWJShUnEBxtrEMWLY7Iy8sicu7ZfWtNLX+0aIBgXV6SsrTRdaca16Jiy9gDxAgUNu5PQfEnFZ7AJQhw9c8wrmV3mYDOKq6oQKQx5FTc0uUDxljhR/fV4MYar0fd0lSAmWliEbky9dCkPGbEH437k08UU0siFXFGDLdWqGoB9PgTNqC0ZsjSf9nlbScl5ByTjUwzit38t6jcaax/NLuW1lGOovOq1+hjjODkrMaUx4yjxARrFlm9JiJr1kZkrfl3qBmj8qBAoLcErJzZ26M5DgJVIuBcrdyPYpWa7dZMuax/9OmGFvV1LkfRiw41fe3osIH0suu8+htN8rVvNsn9C/jKZ7PhPQTqkUBa/AnQV7qQ5c82k4XLlY0pCx33vhyv+tu3y5jl6xNoFwOtHPVSBwQgAIFiCFQj6LOLC3PSXJvJSa1cnCBUTB+z99lhMjOq65QmNNEAwZe+Ky4f+WBcDjKuZNqGxvMptjjXLxd7Ld9xacufVKxKt5/+bjt3Lxf7J231Y6xx/EXj+2hq+AuMu5e/HGaEES2F4v5oZjEtJ8yx++oYNfD0lz7fKe+4yIpJLnuZ7qfbVPjRcrQJnDxzRlL0/KsCUKGisYhUtNmzp9Bedpubw1z3BGrdq0KWzse7L40bt7CuY+65dvaAQFcCWP505cG7gBJwrla1Fn+0fe2L3mi4E32pyFTdVwVfS7ksf7Su1lZjDmvMjdX1q3//ridK3a5ljwnsR4EABOqfQNrtqwLuU72lk8n21f3JqT8tsVr+GPvJ3jaT87jtqfTyQ4bk3MxKCEAAAhUlkLb8KSLjV2+sxzXGzzYT5FmvPdVCZNphCS/FuVrHZIsGen4oxiV45ev2t1qDOruiFi2TD4l7AodbV8xrWvwx1j+FSnvKMtSdL/z7qrXLiy/FZMnSiInDI+Li/ajLV3Y52VjjZBd1URs4UGSjEbQ2mvNMtguwWhWpIKPniTnHdz1e+zPLxDzSdrVsNhZBmuhF49T5y7xz4iY+UpNnXfT4k1GZO6drPW7f//qhvcWeelhSPvDejBub2+5/dd4A48f517IMgcoQKCxbVqZNaoVAyQSCIv40p4M+d7+5yTUoNU1VE9JnnovKHSZC/29+F/MscHRfPSn1VkDK1ZaL+6MXCP6ibmrp0vUcll7NAgQgUF8Egmn5Y39g9MmuczN1VLdtc0vmwtwTfzLvy7G0fbutJftCvRx1UwcEIACBngj0M6KMlp7cvv74Z3sdqIGNSynOOsQ9NJw21f7evmJcv/xFrzs1K5VaQvZUVq6ye0zyiT/umFIzSWbEH+vC5OrJfnWZu1y2L//2I6YlPXcvL9jxXfbJhmbyGjq0+ItXZ/2TK+W7ijVa8gk2/r6MNBZBuc4nKi6pAKRFA09nX3PrerWmckXdynoqzqIrW8Tr6Ti2Q6A3BBB/ekONY6pOICjij5rGauko4NO9a5fI7/8Ykx/8d5P8x/9r8tJDatpGNTVdsdKeBAaYhHIzfH7Ktta+/XXijzOpdbW95Yu14V9223mFAATqj0A8YX9LSr1Ar+RINZ6Ye5rrLvBde37Ln4qIP1j+ONS8QgACNSDQogGfTVEL7HxF07M70ecvN8fSVuD59vevd+KPEwimTLZWLutN9lgnNmhGqt/+PuZZpdz/QM+3eC7ej9/yx99mKctqGT/KPNRU4V/Fm3ylPfWA0p0rsvebcaS1pFm8xNZx1PTcljXZx7n3Uw+1+2eLP5q1a5WxdNJsZZo5rC9Fg0KrK5aO9VkTJDu7qIWRK5q6Xa2N8hV1C1OBSM/l48oUCiJfW6yHgBLo/omFCwQCSCAT8Lm2nVMTUC0uBpF91/XvHeZphT6J0RgX3o+5SV+pwfnOOSshH3x/XL742bj8y5c65ZS39e3k07VVvemyFx7ZGb/e8sXa8C9nH897CECgfggkUlbk0QC5fSk9F8TTmfbrOr0h0afR/ftbVwS9GFbX2XIWLH/KSZO6IACBUgk4ty/3sDLX8Vu2ZNZq1sM/3xQTF6g+syX3Urb4o3up65cWFxhZhR8nNDz9bNQTO7wdcvxRtyZ1I1MxxFkT5ditpFUa9FlLobg/7tzQZkIV5Cr+B6PNxnNKhZZSilr+6IMIFXqc0KRzcusd9mSpVj/FuMT11Ka7hncilX9/J/4MH27Xuvf+fdxyrnl123iFQCUIEPOnElSps+wEnNjSr19pJ4FydyRt+ZPnxuXV1yKy1KRl1KJB89R3ulrFBTnNNkH1W/v4n75Xq1+0AwEIlJ9APKUdx6LV+40pZhTuaa7f8sf97gwzpvsai0KfUqv1j3uCXUy9Pe2z3QTX1ELMH8uBvxCAQHUJODd+FbrzlS1b7fWhZqnS30W1Rrnx5qh87CPxHgWJtEgwPlO7un49t0g8y3JNCa6/rRPGmzTlo8Ssj3hJPv7O1J2rrFhl15bD6sfVr65fGq/nzTxxf5SNCjFqJaQPA3IV5z6m2zR9fKnWrZqYRQUgfQh77XVNnsuYs3DSOeqr1Y/rs7qjjTDizmYTdHu5ufY/1FhiadF4Q2r5pBb+77woLtddH/MymJ1zljuy62sm3k+wzuVde8m7MBHA8idMsxnisbgnKbUO+NxTtq8FJvWkljNOS1RV+NE2025fqTSauk6L39pHn7bvNG5pFAhAoL4JpGP+BNXyJ+WGpZRdvJ9hw0yss9GWuw36XL45cE/Pc8VoKF8r1AQBCEAgNwFn+VNQ/ElZ/qhocJnJrKUpu1ebuJCa4rxQ0axeakGpGRWHDsmIBC7uj4YbUOFHXZE+ZCzM335h3Ige1vpFLYByFReGoNzij7aVz+1rhwv2nMfqx/XzS5+Pyyf+Lt5joGS3f/arpnzXohb4TvhRNu9/TzydSj37mN68n2myf2lZbFLAu/KSCcCt5fCpCZk00cQNMsGlVfRbk8f1Ky3qEezZIeS1wgQyn9YKN0T1EOgtAQ1YrE+Lm4ydWjlMNXvbDz3OiU+5XBaeWxSVN96IeCfc005JPZbvS2MlHpt2+zLBVv3lLfN0yV+y3/u3sQwBCNQHgbTbV8DO4j1Z/rjUweVO9552+yLbV318gOklBEJGoJ+L+bO/6zWXf5jO8mfEiKRn+XLZJfZa8QkTiNiJFP793bITCHLFhHFuUmOMkKTCj1qc6LXymeYhpJb7F0Q9t1tXl3uthfjjYlK684TrS/arXs8eOMHGNMreVsx7tfxRl6vjZyXkvZfF5Sv/3Ckf+2hcyil0aT807bsWtXZScU6Lc/E63ASv1qIikBYnCnlvfH/c3JbTEtZXPYsQ6EYgYJeN3frHCgh4JqKKwQkvtUTi3L72d3Q/uS94yH6daiH8KJP8bl+WmGYo0OK3BLJr+AsBCNQbgbTbV+AsfyxJF9dB37nfHH0S7VLvljvoczrVe1Za3nqbV/oLAQjUJ4FiLH/URUiLWv5oUTHcxY5xIQPslq5/C2WD0rg/Gvz5io93tWpRqxR1TVKroPuMAOQvb6xJelbgao050ghR5SoqPKnoog9tXRBqf90uBk9P4o//mN4sDzbngc9d2SkXXZCQIw63Qltv6unpGHVl1lTuWtT6Ry1a170Z8YQ9t96JQE4U8tepYRnURVqvz1UQpECgGgS6/hpUo0XagECJBNLBnlPBlks8vKy7u1Tv2dm+VPjRGxw1Kz326Opb/eggXfC87gGf7cWGmp9q8ccA8lbwBwIQqDsCQXX7chaI+WL+aCwKLeV0+9KUxmqNqTceLu6GbYW/EIAABKpDwP32uDAF2a2qIKLXiRqM2H+j7wIaL30+6mWPyj5O3xeyDlFx4cMfiOeMjeOsf9SySGMCubLsVXs9ePDE8l+vupg9uYI+u4cC7nrV9aeeX49OuX4tMtY/zrrHCT46LrU2GjzYxgZaszYzB7qtkKin2ykQqAQBxJ9KUKXOshJwJ9J+zbVXxZ31kQtArQPVk5mz+jn15PKfSIuFqTc+6hq3d28mk45ebOhNmJoAp8Ufc/FBgQAE6puAusJq0e92kIpe5Gpx5v26rBlltHhPmc2Tbg3gqbEYCsXG8A4o8g/xfooExW4QgEDFCDjxJ9/vmt/ly9+JMaNt2nA9bsnzXcUBt18h8adQQGR1E3vbifZkcaPJLOauVV9x4s8k10L5XtPiT46gz+68UGnLn/KNpueaph+RNNl2bYaze++3J2Tn6uWOPnyanQPNyuYvhebVvx/LECgngYBdNpZzaNQVFgJp8ScQlj+WquuTvluxKuLFJFJ/XTW9rWXJDvrsrHw0QOD/3969wMlV13cf/81s7vf7nYQEQRIIgYRAuIMUBLRYK5rH1tL2sS212mqQYsGHIgJCn1YfKAIq4gP6VKugWBCeBq1CIAQMJIGAyNXc79fNZjeb7M72/z1n/rNnZ2dn9r5nznz+r9fu3M6cOf/3OWfOnN/5/f9/30mgf64vl5PPRgCBrgnEP/On+UeuAj0qSpFX8U2/uiv7h5G+Alb+IYBAHwqUavblh3n3Tb6iizr3hPC7Udk/+UXNiPR9ryZiusjX0XLRhRk7/bQw+KD+f+77TpWt/U34ed3dB46WrTn403wM8MvsM9N9hqh/vtxv583NXo1xFVEQ0HfE7es1243KppLf9IuRvrwQt70p0Ppbpjc/nc9CoB0CPsvGZ9204y09Nonv8yfa4bNPpV10Wvjl3mMf3o4ZD3Od5Kn4qyvRvjbU34aKfy58xH8EEChHgVzwJ2ZH8cFu+F59T+oqtv4UbFaWkkapUWaiim/6tWNXy5MDH8QJp2r/fzJ/2m/FlAgg0DMCA9xJv0p9Gx0++8yfQn3szD0xDB68+VbKfOf14dyam3xN6eRoUGpm9oFLMvaJjzcGAaSN2VGnNAqV+sbp7lI0+JMdkMRfqOzuz+6r+Z2c7fhZn3+c62cpv8ya6Zp+uWPgTnfMW76i+aBN5k++FI97Q6B5C+yNT+MzEOiEgM+yiUPwp382+yja4bMf0nLa1NZf+J2obpfe4g+oNTXhbHyWT5D5k73qzmhfXSLmzQjEQiDX7CtmHT4Lx1/V1bC+fpj3UdnvH70+fnz4Xbljhx41lx8/UmU/fLjK/PdX8yvF71VXh6/rZIaCAAII9IXAwAHh99phF/QuVDRcu0qhzB9l9JyYzf55JS/7Z8UL4fu6OhqURsD6zKca7cxFYaBpTnY0qkLL2pXnNPiILjYq+J+f3ekvTCoQkqQywTXdU99NasJ3qhthrFDxTb+W/jxt37q/yp74z3AUNjWH9gO2FHofzyHQ3QLZ63DdPVvmh0D3CcSpw+dc5s/hsH4auUAnHoPc1e5oB37dV/uOzSnsRC9lYWptUy7LRwfiQe6q1BD3A6O2zoJRHoYN7di8mRoBBOIjkMv8iWHwR/3+7N4TZiD6rBz9wPUl1+wrkvnzytq0rVsfnuSsW9fPLrukMfgx7d9T7NYHuUdm+xsqNi2vIYAAAj0hkOvzJ/v7MP8zdrnvRJW2fiue5LJ/Xn3NNcly/f6cc1Y4rbJEdmW/J6OdCIevdvy/soAuuThjC0/ubzV1rpf8HipTJuv3Z8o2uyZrPtivj0pqsy/V7aN/6NrmFSkXX5QJmoStWpM2dfzsO3/ualCvyEfyEgIFBcj8KcjCk3ESyGX+xKDDZz/al2+Ktm1beLIyaWLfZ/1onflO9PzVFZ/l45t8+avv/vk4rWeWBQEE2i/QmAm/e6pieBT330NB5k9efz+q4fjsiF/R4d6XPRvWR69r9K6HflJljz2eDvq60HPFim8uNtL1bUZBAAEE+kJAne/3d01elZUZ7RrAL0uxzB9No35i9N25bXvK1DTr2eVpU5aIymWu2dbIbmyiNfu4lB0zq+e+L31AY8uWYPGDf3XuwqNcdCEyDpn8zUvWO/f6u3SL33tfxq69usE+/KGMTT8q9PdWvbMUfAoCrgk+CAjEXSAX/IlBh8/+gOUP7L7Jl2/j3NeWPnW0piY8kdq3P1wi39mzgkBbtob9/kyb2tdLy+cjgEBnBTLZi4zpqp77Ad/ZZRsR9D3mMhBd/w573dVfldHuu8eXsWOagpMk9W2h0QlXv5w2BYL0Pfqpv2q0Fc+n7f8/mbaVL4VXSPVcseKzi8j8KabEawgg0NMC6vRZvw/V5EmBIF8U+Dh4MAx6FOtnZ+4JGXvOff+pU2ZfPnhpxk5bWLgpkZ8mbrcaZUzF92mj+0nO+lH9OlJOmZexU+aZbdiYsiFDOvJOpkWg6wIxvGbY9Uoxh2QJ+CwbH3jpy9r5g7kPSMUt+BM2+9JBNlTyGT7+xMsHgXwzib605LMRQKDzAo3Zc4F4Z/5omPewjj7r0NfYN/3SycGyZ8OfIueeHVbqDNcnhQ/46DvWNwfz743eNrlzjOY+f+IXCIsuK/cRQCDZAm11+uw7e26ryZdXOcn1GxMtv39Z+QV+tPxTXbMvFX2/6ztaxWek+8zQ8NnK/q/sn0IdgFe2CrXvaQGCPz0tzPy7LOADLXEI/vhl8Jk/uWZfk7pczW6Zge/wWQfZhgZ3UuRulYrsm0P45l+M+NUt3MwEgT4TiHWfP37UwepU0O+DkKJ9/uixb/r1sOvkWVfE1QThhDnNJz7KAjrj9DAY9O7vmpuE6b3R4rN+1M+Q+rOgIIAAAn0l4Dt9VuZPtPgmX+PGRJ9tfV8ZM74Z0OUfdH3znFpeGT++RuoHUwF+NYHz2T8H3AAAKv53qp+WWwQQ6F0Bgj+9682ndUIgTsGfXObPkVTQXEGdmla57Ny49PmTG+rdNfvy2T0+20f0/r5/rROrg7cggEAMBJqbfcVgYfIWwV/Z3eOyfnwA2n/3+El95o8CPyrnndP6JEfD46q8u67tqA79/QRE/EMAgRgI+E6f/e9Wv0i7dof3SmX+aCqNGvUhF/g5dX7r70Q/v3K4nZodmn6Ly/5R8RnpfjTIcqgDy4hAEgUI/iRxrSasTvEa7Ss8GTniRnOIW5MvrXaN4KVMn1rXYeru7I8Nn+2j1/19Mn+kQUGgfAXi3OzLD+OrjktVfLPTqLYP/ug5NXU4ekZz1o+fbubR4XMbNrhge96VdD+Nz/yhvx8vwi0CCPSVgA/+tMr82RN+F6q/s1JloRsqfEGZB35UR5/B1Jz5E9bcXxwo5cDrCCDQMwIEf3rGlbl2o0Cuz584jPaV7XRay+SbfMWls2dP7jt93uiGklSJ9rXh7/u+gPx7uEUAgfISiHOzr/wru/57Jyo8MTJC4rkFsn40rZrZ+qDQ79po+kXmT1SV+wgg0JcC6vBZpb4+/P0VPmq+GDd2rH+m7VufYd72FOXxSnOnz+HyavRHFd83Zfgs/xFAoLcFGO2rt8X5vA4L+PRZ399Oh2fQjW8YkB29QX3+bM1e1Z4Uk/5+fDV1YK12fW1sckOFqowa6V8Jh9gcMthlBmVHnhjqMoUoCCBQfgI+80eZfnEragqrLMSabJOu0aNbX+1Wps6X/7EhGBmn2MmOmn6pw2c1/Zp9fOv5aMQwFTJ/Qgf+I4BA3wkMGKjvqJTVu+zwaMl1+NyOzJ/o+8r5vjJ/dHzSSI4a1ZEOn8t5bbLsSRKI4c/GJPFSl+4QiFPwRweyfi5kqk7sNm4Maxe3zB+fUrvRB38iQyxrif1VeD8Ec3esI+aBAAK9K+D7/FGgJY4lmv1TqNmXX+ZigR9NMyvb9KvtzJ8wyD1yROvAkP8MbhFAAIHeEGjO/Gn+NI1GqN+xutg22F18q5SiDvhzTb+2piJDvVeKAPVEIJ4CBH/iuV5YqohAnII/Wix/suKv5MQt+DPMZf6o+BHJ8jta9ZlA+7JXzIOJ+YcAAmUlkGv2FdOjuEbf8mX0qM4HZqZPb7JBA8Orx4Waq+YyfyIZjv5zuUUAAQR6U8D3+eN/t+qzd+0OA9Tt6ey5N5e1Nz7LB3/U6XNz5k/njwe9scx8BgJJF4jpz8aks1O/jgj4g2gcmn1puX3TL93XKF9xu/KeP4ymz/TR8qr4x4VOpMIp+I8AAnEXyDX7KvPMn/Y4zywy6td+18RVZeRITijaY8k0CCDQcwKFMn/8hcJSw7z33FL13ZynZEf8evOtlOmChTKf+tPhSN+tED4ZASdA8IfNIPYCh92w6ioDYtDhs5aj/4Dmk4y49fej5YsGf9RMzWf66DUVRvwKHfiPQDkLxL3Zlx/xS8ajCvT50xH73JDveZ0+a0SdOtd/mbIxhw7pyByZFgEEEOh+AZ/5E+3zx4+8WsmZP+vdiI0q0ebA3a/PHBFAoD0CBH/ao8Q0fSoQ58yfuDX50oqKHlzzm3zpdf/cvv3hwVjPURBAoLwEGjPh/lsV06N4v0hGUlcDM37I99+5Tp+jJZf1Q38/URbuI4BAHwmEHT63HO3LZ/60Z5j3PlrsHvvY8eOaWvRzFL042WMfyowRQKCoQEx/NhZdZl6sMIG4BX98nz9aDZMmNWcBxWW1+KHetTw+yye6bP65ffuiz3IfAQTKScD3+ZOOBFnitPz9siMjdscyTRjfFHyXqc+IrduaA0D099MduswDAQS6S6Bgs6/d4dzbM8x7dy1HnObj+/3RMkUzQuO0jCwLApUkQMvLSlrbZVjXuAV+RBjte2iy6/MnbkVDvfvi+/fxj3Xrn6PPn6gK9xEoL4Fcs6908/4epxosOi1j+mvqpsWbNTNjq1an7V3X9MtnXOYyf+jvJ06rnmVBoGIFfLOvmoNmv30jFXxf5Tp8rqBh3qMbwJTJTfb2O2HQPpqZHp2G+wgg0HsCZP70njWf1AmBOAZ/fAqvqjNoUCcq1cNvGTa8+QPy+/vRKxo5Z4jrdO/wEbOD7gcKBQEEyk/Ad/gctw7n8yU13G93lFlHh3OJDvmey/yJjCzWHZ/FPBBAAIHOCPjMn20uQ/H7P6yy538dnmZpcJB+FXq5PZr5Q7OvzmxVvAeB7hWo0K+i7kNc9UrG9hzopl+3BRZrwnizcWPbvnSqq6q1te6vLhXcKliik/qmjFnGvRbeppofu+cy7jW9T7c6cZh+VFPuSmr+Iqxbn7ING1PBsOGaVv1LpNyfOhJOu2oH99u8bTL98J84wdXBtfstVPbsSdnGzWaNDSmb6A6O+aNnHT4c2kazbQrNpzef27OnNz+t45+l9eJLWyeGyv7RNrPs2XTQnKKmJsxo0npVu/QxY8zGuE5aq91IOntd8zD1D6RMgyMNYZ9COoDrT8PKa/SGUmXbdrcduY5Z129y243biPQDaeDAJtMwziPbOHH79YvpoDPXU+dnbOjQ1p+gZi9aPm1Zw4Y25TKy1AHsjp0p27nLLbPbxhvc/jDULecwNw9tR+ok9oCr7wG336re1e5Wj2vcbbVrVjLS9R8yfpzZeNfURNvuse/J2JA2OpPVZ6luyqKS0yE3b+2D+pGnAJv+1ExQnYSrDxStD70WvR0xvKlg/XyNVQetl7aKPl/fEYV+WG7anLJ33g0t5K2rkhppI9p0cbALYM5w66GtfbTBrfM6t60MdcbFlsMvnyxra93+PKHwPu+ny7/Vd9Je56jmiHWH3Lbm9v20y2pRsyZ97wTfOdn7Wh9qCtTW8hxy7685mAq24fxptu9w62qv2y5cveQxelSYDSc/vx61HIOcl9aTmklqqPK2voO0PT3t9qM1L6fddqNtx/25722Z6vusrbLdrbct7gRBdVT9tB/pT25t7bfRecW92Vd0WbvjvjJ/3FZgb76dskcfTwfrbfmKcMcYyTDv3UHMPBBAoIsCPvNHs9Fv62NmNZk6rNfxoFJLi+CP+71DQQCBvhVwP3cpXRG45353BmruDKEHy+jRZmefkbGFp+rHb1i2bE3ZypfS9tKqyJm+f7ETtzphOXWB/txnuO9mnXi/sDIdnIh1Ynat3jLWBRPOWJSx07J10EnysmfS9uxzrc9qdZDUweL49zblMmviMtKXKnbcsU2mYStnHx//g1hbJ/TKCNqy1WzFC639W628Ek8omDDMHdBzAaHs/TBoYPbWO2kLA2beq+VnznbredHpGZt5dPj6b15PBSfTW902rvLUsrSd5bb/s87MmAIVO9zJ+0urU0ETkOiIGjo595liJRa56Mt79qZsjwsOvOHWcVjSQfOVMxY1BUEAPad+R7SPdNf+955jmuyUeRmbe2JooHqsfTVta18L08bnzW2yk0/O2DHZIa914q8ris+79be/OgxqLXT7rvZhBe8U+HpmuQISvg5a6uh9PW5Z5sxusvPOzthkl6KtoqyK4DPc5/hAw3CXVaZglX7UTppoNsv9sFWwTEXNcV5yzXLWvhp+jtbneedkgh++wQQF/ilIt3pNWMdoXy4FJm31lAIlvmmRD0AqWP2CW97X3DbkiwKZVQqwuK9pZe0dccHAzhQFZY6a1mTvPa4p+A5QYFvBBwVQFQRUqalJWbRTYr1H33vzTw6NNI2aLi1z66ZYEFnvO9oZH3+8CyLNCAOGem+0KCioosBRJRT1ZaZtU98LL7pjX7T4bTD6HPcRQACB3hYYMqTJFl/RGBz3/HGpt5chbp83InKBr62LKHFbZpYHgSQLpJpcSXIFu6tuNbV17mp2vU0Y5y4DR4qCP4cOKwDU/UUr5vXfNp/EKEAzzmUk6KT6LXf10xeNpDLYHXB8loGa9bTOyHFXyd1bdMKiK+H+VlfBdfK4y50sFipqq6tO6nSVXSeA+vNZQzr58PeDW7fATW4EmkxwG2YeaVnV7tkXZZNkmlKmK/P6U1FGxowZOmENT+zDZ1v+VzDoqr/oGeeWn1QZjxQY0DakEyplzWgdNDheBR10gqwTU2U/6KCt0cGUHdGvX3gCrRPcIHPGZXgoe0aZD6WKggYzZyirRttFJnjPOjf0514XaPGBBQUtjhwJs280PwV6FK/wJ9ZtfYaWTe3r/Zwrx+UAABdvSURBVEm9flz47Iv+/cOMm4MuC0TTaNvXdqvlUd9Iwa0PXGUDG6r3zp0WBFAURFD6ti8KTGoe0RN87X/veU8YGNL89Lq2e2XkadnlWl8f1rPRPa/H+tN97QO+PwB9hjJa9D7tn9qn8ouCAnWHUkE2k/tKaleZe0J49TFcjnDZvJVmoCFYFXjRMqso6KrMIB/ECZ9te5kU9NP20FZRQEtBGm1L+lxlYmndK4Dq+wHw71VQUllpunqqH85aV9o+dBu9L3/vo6DOtKkhlh9O1s+v0O0YF0xXUDT4znLz9dlGmr+2T32+sn207jSNMpE0jfcpNM9j3fpfcErGZXi57Sabdaagluapou9P1V/rVoF7XxRAHuCs1YRLnRnrMxUQixati3lzM3aSCwAqU04ZeJrvLbeH125uuqEh2F6i70nqfWXqyc+vM3/7sY9kXLZigR0mqRDUq5XAuJEDrfrgETvckN3pWk3BEwgg4AUmjBrkWi3Uu98ifG96E27LR2DKWPcDkdJpAYI/JejqXRuq62+7z5Y+tTK4bj5j2kS7+7Ylpltftuxu51mYf0MHb19Zm7Jn3RXm6EmomigoS2fhfDUx6PqX92u/cVdTV6WDJiJaPKWqnr4wE5wIdnBxC07+issGWPF82jZvaT6xUQaNMgN0Nd0XnaBucCeGCkz89o20C0SErygz4so/di9SYieggNEBFxDSiZlOYHVfwQBlBCkQoywRreORQ/sHPzQOHspGGVxNdDLss0t8MFABkHNdBsqZLmNCZf36cPt/481w21FwRSfa808JM8SCidw/BaF0gl6oiZifpjO3Cow857bdl19p3nYVnFEW22kLw2Y+nZmvf4/8VrsmQwoWRAMD2gcVODnKBTaUAaRpfB8neq9SyRVUUbBm0yaXCej2X83DlwWuudy5Z7mglAu4lioKjCkTz/dP4Kc/SYEbl5XlgyvVLlCs4KCCxsr0UZMyH0jSKB7z3XrRulFQ8Wk3P/35II2fZ/RWgRtlPJ0wp8lmukwhrdv2Fn2+ljcaXNb25rOBtAwKkmh51beVPksBxraa8GnaYp+vdaOAlf7UnE5FwXF9h7WVBbhqTdptO6kgW83XS030zjk7zPTyz0VvtQ3Ld9uWfvbqb5uccfTVlve1HSr4Q0Gg0gUI/lT6FkD9OyJA8KcjWkwbNwGCP11bIwR/Svj94JH/srsf+Kl9767rXdbPaFty49fVKsru++drcu/s6eCP/6DV7kRCJ4E66VMTj2jbYj9NV291oqSik6SeKFr+t99Ou5Ol9gWWdFL7ussc0gnmZZeEwYCeWC7m2fMChYI//lO1fnUir0CBTt4LpQZvdNuCgkva/vuio231raNmXgoeKPDT3UEmWSiooECF+voqFLRRJpIySxRMU3Aov6gPpA0b1V9R2HdM/uulHivooICN+mRS0EeZRqWK1ouC0X4Epuj0Go3p2eWpoAmbhv5WJpaCgpMnucCJy+ZT4KfQuo7Oo9R9fUescYE5Zda0te2UmkdHX1ffQAraTWiHj+atwJ2Ch8e7JmNybU8ZM3yA1dY32obNmeC9L69NB9t/lQuQqR8kBapkd83nCP60x5Npki1A8CfZ65fada8AwZ/u9WRuvStA8Kdr3gR/Svj9+ZJ/slnTJ9sNS64Mply+cq399bVfsxU/u8c1lQnTznor+FNiUXkZgVgLFAv+xHrBWTgE+kDAB396qllxH1SJj0SgxwQI/vQYLTNOoADBnwSu1AqqEsGfrq1sdw2WUkxg+849dv6ZJ+cmmT51ouuzxPVPs3tfLvgzsH8H2irk5sQdBCpLoCodZpWxv1TWeqe2nRNIu/2lfz9lw5XOvurcJ/AuBJIjkHZtILW/qCkkBQEEigtoPxng9hcNhkBBAIHKEiD4U2J9H6ipdUP+utz6bBmYbaNQ7Z73ZewI1zspBQEE2iUwdBBfO+2CYqKKF9CPcxvM/lLxGwIA7RJQdikFAQTaJzBqWPO5TfvewVQIIJAEAX5VlliLw4cNMXX67Eu9OnpwZYR73pf6I+3rw8FPzy0ClSjQryocoalRw8FREECgqEB/t780uqwfP2JY0Yl5EYEKF1DWT6MbNo/DS4VvCFS/XQK6sHDE7S8klraLi4liJkALgq6tEII/Jfwmjh9j6zdty021ftN2N2R6ysaPdWMBZ8vu6naMde0n5haBChWgz58KXfFUu1MC9PnTKTbeVKEC9PlToSueandKQH3+7Ks5zFDvndLjTX0tQJ8/XVsDdFZTwu+icxfY0l+ttHUbt1ltXb09+NBSW7RgTq6/nxJv52UEEEAAAQQQQAABBBBAAAEEEECgTwXI/CnB/5HLzrVfr37dPnjldaZ+BKdNmWD33r6kxLt4GQEEEEAAAQQQQAABBBBAAAEEEIiHAMGfEuthoOvs+Y4v/62p4+eag3U2eeLYEu/gZQQQQAABBBBAAAEEEEAAAQQQQCA+AgR/2rku1PGz/igIIIAAAggggAACCCCAAAIIIIBAOQnQ5085rS2WFQEEEEAAAQQQQAABBBBAAAEEEOigQKrJlQ6+h8kRQAABBBBAAAEEEEAAAQQQQAABBMpEgMyfMllRLCYCCCCAAAIIIIAAAggggAACCCDQGQGCP51R4z0IIIAAAggggAACCCCAAAIIIIBAmQgQ/OnCitq+a6/V1tV3YQ68FYHKFGhszNjmbbssk8lUJgC1RsAJHGloaNOh2PGlprbOduza1+Z7eQGBpAlkXA8FnT1esL8kbWugPsUE6g7V28YtO0z7TKFS6vcX+0shNZ5DIDkCjPbViXX57vot9unr77RN7stV5bILF9kt//BJ698Pzk5w8paECdz01QftR4/9qkWt5s6eZf9+7z8Gz/34iWV2653/z44cPmIDBvS3Gz//Z3b5xWe2mJ4HCCRd4JfLV9nVN95ja37x7RZVLXZ8qXf7zPW33WdLn1ppKfeuGdMm2t23LQluW8yEBwgkSEBdU17/lfuCGt3+xb9qUbMzL/+07a8+2OK5v//U/7A/W3yJsb+0YOFBBQhcde1XbfnKV037zJhRw+2SC063L372E7maF/v9xf6SY+IOAokWIPOnE6v3y1970GbNmGwvPPEN+8l3brZlL7xi/7F0eSfmxFsQSJ5AkzXZmaeeYI8+8JXc31dv/Jugojt377Mv/csDdt1n/shW//zbdvVVH7Mb/vf9tnf/geRBUCMECgjs2Vtt7//439vffvFfC7xqVuz48pPHl9kLq163xx78ij3/+L02ZdI4u+XO7xWcD08ikASBR598zs75g7+zx37+XMHqKLlBwZ7o8eYPLj07mJb9pSAZTyZY4NiZ0+xH3/ySvbT0W3bDkivt+4/8wlatfTOocanfX+wvCd4wqBoCEQGCPxGM9tzVSeqLr7xpf/rR99uQwQNNX7S/d84C+/nTL7bn7UyDQEUIDBs6xI45ekrub6o7SVX55fLVNmrEUPvo759v/fpV2cc/fKENHjTQnnpuTUW4UEkERrmrsfd/7Vq75QufbIVR6vjy5LIX7f3nL7SZ0yfb0CGD7E8/9n57/sXXrOZgXat58QQCSRC48Oz59sNv3mgXnXdqm9WZNGFM7lij486oEcOCadlf2iTjhYQKXPOpxTbnuBk2aOAAu/i8hTZh3Chb/utXg9qW+v3F/pLQjYJqIZAnQPAnD6TUwx2unx+lUyrd3hfd375zr3/ILQIVL/Dyb96xz990j918x3dtxUuv5Ty279xjR02ZkHucTqXc4/G2bcee3HPcQSDJAtrmp00eb2NHj2xVzVLHF+0/0yPHnulTJwb9OuiKLgWBJAooyKmLB0MHD2qzet/78ZN2zU332h33PRz0JecnZH/xEtxWosA767YEfcMdf+z0oPqlfn+xv1TiVkKdK1GA4E8H13r1gdrgHQNdVN2Xga7fkgMHw+f9c9wiUKkCJx4/0y5932l29LRJtnnrLvuLz/+zKXVfZf+Bgxbdd/Sc+v05QOaCKCgVLlDq+HKgpja4ouuZBg4Ij0PV7nkKApUocNmFp9vpp8y2yRPH2JNPr7TFV93kLsaFFxPYXypxi6DOElA26NVfutvmzTnGlD2nUur3F/tLwMQ/BBIvQA/FHVzFI4YPCd6hjtF80f3hrpkLBQEEzK74wHktGJbceLf99D+fCTp1Hjl8qB0+0rzvaML6+iM2Yhj7Tws0HlSkQKnjy3C3n7Q89hwOnNh/KnJzodJO4IbPXZlzuOrKy+3CK662p1a8bIsvv8DYX3I03KkgAY329Zkv3mmNjY329Vs/a+l0eJ2/1O8v9pcK2kioakULkPnTwdU/YdxoS7m0/Q2btufeuW7jNps4fnTuMXcQQKBZYJLbN+rq6oMntP9s2Lwj96KGItWQpGqXTkGg0gVKHV8mjh9j6zdtyzGtd8chNSMbP5b9J4fCnYoVGDZkcNAXlj/esL9U7KZQsRVXdo+yrZVF+t1/vd7GjB6Rsyj1+4v9JUfFHQQSLUDwp4Ord/TI4bbgpOPswYeWmqLrb6/bbL945iW76Ny2OyPs4EcwOQJlLXD7179vb7yzwY40NNiaV98Omnyd4Ub/UnnfWfNt3/4ae+ixp9xVqYz94JH/skP1h+38M08p6zqz8Ah0RODwkYZg/9B7dL+hoTF4e6njy0XnLrClv1ppuuBQ6wKqOg4tWjDHhg0d3JGPZ1oEykYgk8kE+4iOF8pk0P6iiwYqa19/N9gH1MxLGXH3/+AJU/9Xp8+fHbzO/hIw8K9CBA7WHrI//pubg9FTb/7C/7Sa2jp3sW27bdq6MxAo9fuL/aVCNhSqWfECKdd5cXgUrXiK9gMo4PPp6+6wLdt2uUGtzS694DS79bq/tAH9aUXXfkWmTKrAFX95o73+1vqgesqS0/5xsxvZSKNPqPzo0V/ZbXf9W3DC29/tMxqO9MOXnhO8xj8Eki6wY9c+u+CKz7Wo5sJ577UH7rwueK7Y8aXeBUq/cOs33QWHVZZyU09znaffe/sSO/qoSS3mxwMEkiLw3YeftH9yFxSi5X999k+CkSI1sIB+i2mUPBWNwHqNG/ZdTb5U2F8CBv5ViMCW7bvtosWfb1XbMW6EyWd+elfwfLHfX+wvreh4AoFEChD86cJq1Ret+lrgqmsXEHlrIgWqXerx7r3VrjnkmOAHeX4llemwZfsumzJxXDDke/7rPEag0gWKHV/UMac69Jw8cWylM1H/ChdQFpCyfXTiOnXSeKuqap3Qzv5S4RsJ1W8hUOr3F/tLCy4eIJA4AYI/iVulVAgBBBBAAAEEEEAAAQQQQAABBBBoFmh9iaT5Ne4hgAACCCCAAAIIIIAAAggggAACCJS5AMGfMl+BLD4CCCCAAAIIIIAAAggggAACCCBQTIDgTzEdXkMAAQQQQAABBBBAAAEEEEAAAQTKXIDgT5mvQBYfAQQQQAABBBBAAAEEEEAAAQQQKCZA8KeYDq8hgAACCCCAAAIIIIAAAggggAACZS5A8KfMVyCLjwACCCCAAAIIIIAAAggggAACCBQTIPhTTIfXEEAAAQQQQAABBBBAAAEEEEAAgTIXIPhT5iuQxUcAAQQQQAABBBBAAAEEEEAAAQSKCRD8KabDawgggAACCCCAAAIIIIAAAggggECZCxD8KfMVyOIjgAACCCCAAAIIIIAAAggggAACxQQI/hTT4TUEEEAAAQQQQAABBBBAAAEEEECgzAUI/pT5CmTxEUAAAQQQQAABBBBAAAEEEEAAgWICBH+K6fAaAggggAACCCCAAAIIIIAAAgggUOYCBH/KfAWy+AgggAACCCCAAAIIIIAAAggggEAxAYI/xXR4DQEEEEAAAQQQQAABBBBAAAEEEChzAYI/Zb4CWXwEEEAAAQQQQAABBBBAAAEEEECgmADBn2I6vIYAAggggAACCCCAAAIIIIAAAgiUuQDBnzJfgSw+AggggAACCCCAAAIIIIAAAgggUEyA4E8xHV5DAAEEEEAAgbIX2L5rr33iM7fajf/yf1vU5f986yG78u++Yrv3Vrd4ngcIIIAAAggggEDSBAj+JG2NUh8EEEAAAQQQaCEwcdxou/j8hfbwz5627z38ZPDaE798wb79/cftQ5ecbWNHj2gxPQ8QQAABBBBAAIGkCfRLWoWoDwIIIIAAAgggkC9w5RUX25pX37KvfuNHNmbUcLvpaw/a4ssvsI9cdm7+pDxGAAEEEEAAAQQSJ5BqciVxtaJCCCCAAAIIIIBAnsDB2kO2+Kov2e82brNTTjzWHrjjH6xfv6q8qXiIAAIIIIAAAggkT4BmX8lbp9QIAQQQQAABBAoIDB480CZPHBu8MmLYEKuq4mdQASaeQgABBBBAAIEECvCrJ4ErlSohgAACCCCAQGuBex74qa1c84Z98o8+YE8//7Ld928/az0RzyCAAAIIIIAAAgkUoM+fBK5UqoQAAggggAACLQUU7PnGdx+1az/9cVP/P/ura+yu+39iJ805xhbNn9NyYh4hgAACCCCAAAIJE6DPn4StUKqDAAIIIIAAAi0FtmzfbX/4yRts4bz32l23fjZ4sb7+sC3+6y+7Yd732yPfucXGjRnZ8k08QgABBBBAAAEEEiRA8CdBK5OqIIAAAggggAACCCCAAAIIIIAAAvkC9PmTL8JjBBBAAAEEEEAAAQQQQAABBBBAIEECBH8StDKpCgIIIIAAAggggAACCCCAAAIIIJAvQPAnX4THCCCAAAIIIIAAAggggAACCCCAQIIECP4kaGVSFQQQQAABBBBAAAEEEEAAAQQQQCBfgOBPvgiPEUAAAQQQQAABBBBAAAEEEEAAgQQJEPxJ0MqkKggggAACCCCAAAIIIIAAAggggEC+AMGffBEeI4AAAggggAACCCCAAAIIIIAAAgkSIPiToJVJVRBAAAEEEEAAAQQQQAABBBBAAIF8AYI/+SI8RgABBBBAAAEEEEAAAQQQQAABBBIkQPAnQSuTqiCAAAIIIIAAAggggAACCCCAAAL5AgR/8kV4jAACCCCAAAIIIIAAAggggAACCCRIgOBPglYmVUEAAQQQQAABBBBAAAEEEEAAAQTyBQj+5IvwGAEEEEAAAQQQQAABBBBAAAEEEEiQAMGfBK1MqoIAAggggAACCCCAAAIIIIAAAgjkCxD8yRfhMQIIIIAAAggggAACCCCAAAIIIJAgAYI/CVqZVAUBBBBAAAEEEEAAAQQQQAABBBDIFyD4ky/CYwQQQAABBBBAAAEEEEAAAQQQQCBBAgR/ErQyqQoCCCCAAAIIIIAAAggggAACCCCQL0DwJ1+ExwgggAACCCCAAAIIIIAAAggggECCBAj+JGhlUhUEEEAAAQQQQAABBBBAAAEEEEAgX4DgT74IjxFAAAEEEEAAAQQQQAABBBBAAIEECRD8SdDKpCoIIIAAAggggAACCCCAAAIIIIBAvgDBn3wRHiOAAAIIIIAAAggggAACCCCAAAIJEiD4k6CVSVUQQAABBBBAAAEEEEAAAQQQQACBfAGCP/kiPEYAAQQQQAABBBBAAAEEEEAAAQQSJEDwJ0Erk6oggAACCCCAAAIIIIAAAggggAAC+QIEf/JFeIwAAggggAACCCCAAAIIIIAAAggkSIDgT4JWJlVBAAEEEEAAAQQQQAABBBBAAAEE8gUI/uSL8BgBBBBAAAEEEEAAAQQQQAABBBBIkADBnwStTKqCAAIIIIAAAggggAACCCCAAAII5AsQ/MkX4TECCCCAAAIIIIAAAggggAACCCCQIAGCPwlamVQFAQQQQAABBBBAAAEEEEAAAQQQyBcg+JMvwmMEEEAAAQQQQAABBBBAAAEEEEAgQQIEfxK0MqkKAggggAACCCCAAAIIIIAAAgggkC9A8CdfhMcIIIAAAggggAACCCCAAAIIIIBAggQI/iRoZVIVBBBAAAEEEEAAAQQQQAABBBBAIF+A4E++CI8RQAABBBBAAAEEEEAAAQQQQACBBAkQ/EnQyqQqCCCAAAIIIIAAAggggAACCCCAQL7AfwMYauYzXH70AQAAAABJRU5ErkJggg==", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "px.line(x=df.index,y=df.force)" ] }, { "cell_type": "code", "execution_count": null, "id": "84a00b6c-c71c-402e-9b1c-163ac1a4935a", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.18" } }, "nbformat": 4, "nbformat_minor": 5 }