{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "3136fdb8-97c4-47d7-9b0a-61529c747e4d",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pandas as pd\n",
"\n",
"#set up strings\n",
"carnum = 'carnum'\n",
"start = 'start'\n",
"end = 'end'\n",
"columns = [\n",
" carnum,\n",
" start,\n",
" end,\n",
" 'distance',\n",
" 'gas'\n",
"]\n",
"mileage = 'mileage'\n",
"triptime = 'time'\n",
"speed = 'speed'"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "1e7a8579-893c-42d2-94fc-73c2ada83d74",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" carnum | \n",
" start | \n",
" end | \n",
" distance | \n",
" gas | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 73 | \n",
" 2022-08-22 04:57:52 | \n",
" 2022-08-22 05:48:15 | \n",
" 98.863620 | \n",
" 4.842427 | \n",
"
\n",
" \n",
" 1 | \n",
" 73 | \n",
" 2022-08-22 05:00:25 | \n",
" 2022-08-22 06:48:40 | \n",
" 60.952214 | \n",
" 10.008699 | \n",
"
\n",
" \n",
" 2 | \n",
" 73 | \n",
" 2022-08-22 11:58:03 | \n",
" 2022-08-22 12:21:11 | \n",
" 44.861855 | \n",
" 6.668674 | \n",
"
\n",
" \n",
" 3 | \n",
" 73 | \n",
" 2022-08-22 19:55:54 | \n",
" 2022-08-22 22:37:06 | \n",
" 26.679683 | \n",
" 5.725053 | \n",
"
\n",
" \n",
" 4 | \n",
" 73 | \n",
" 2022-08-22 10:55:57 | \n",
" 2022-08-22 13:03:49 | \n",
" 56.449703 | \n",
" 3.550615 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 680 | \n",
" 56 | \n",
" 2022-08-22 05:41:40 | \n",
" 2022-08-22 06:52:23 | \n",
" 29.205601 | \n",
" 8.796899 | \n",
"
\n",
" \n",
" 681 | \n",
" 56 | \n",
" 2022-08-22 00:34:24 | \n",
" 2022-08-22 02:53:00 | \n",
" 62.360221 | \n",
" 5.515841 | \n",
"
\n",
" \n",
" 682 | \n",
" 56 | \n",
" 2022-08-22 19:02:12 | \n",
" 2022-08-22 20:34:31 | \n",
" 111.759254 | \n",
" 8.484224 | \n",
"
\n",
" \n",
" 683 | \n",
" 56 | \n",
" 2022-08-22 02:01:12 | \n",
" 2022-08-22 02:41:58 | \n",
" 45.395829 | \n",
" 6.123383 | \n",
"
\n",
" \n",
" 684 | \n",
" 56 | \n",
" 2022-08-22 07:17:09 | \n",
" 2022-08-22 07:48:40 | \n",
" 20.969945 | \n",
" 7.003565 | \n",
"
\n",
" \n",
"
\n",
"
685 rows × 5 columns
\n",
"
"
],
"text/plain": [
" carnum start end distance gas\n",
"0 73 2022-08-22 04:57:52 2022-08-22 05:48:15 98.863620 4.842427\n",
"1 73 2022-08-22 05:00:25 2022-08-22 06:48:40 60.952214 10.008699\n",
"2 73 2022-08-22 11:58:03 2022-08-22 12:21:11 44.861855 6.668674\n",
"3 73 2022-08-22 19:55:54 2022-08-22 22:37:06 26.679683 5.725053\n",
"4 73 2022-08-22 10:55:57 2022-08-22 13:03:49 56.449703 3.550615\n",
".. ... ... ... ... ...\n",
"680 56 2022-08-22 05:41:40 2022-08-22 06:52:23 29.205601 8.796899\n",
"681 56 2022-08-22 00:34:24 2022-08-22 02:53:00 62.360221 5.515841\n",
"682 56 2022-08-22 19:02:12 2022-08-22 20:34:31 111.759254 8.484224\n",
"683 56 2022-08-22 02:01:12 2022-08-22 02:41:58 45.395829 6.123383\n",
"684 56 2022-08-22 07:17:09 2022-08-22 07:48:40 20.969945 7.003565\n",
"\n",
"[685 rows x 5 columns]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#read file into dataframe\n",
"filename = os.path.join('files','cardata.csv')\n",
"df = pd.read_csv(filename,names=columns,parse_dates=['start','end'])\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "efcec18b-cdc9-4676-ace6-c982f3eafcac",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" carnum | \n",
" start | \n",
" end | \n",
" distance | \n",
" gas | \n",
" time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 73 | \n",
" 2022-08-22 04:57:52 | \n",
" 2022-08-22 05:48:15 | \n",
" 98.863620 | \n",
" 4.842427 | \n",
" 0 days 00:50:23 | \n",
"
\n",
" \n",
" 1 | \n",
" 73 | \n",
" 2022-08-22 05:00:25 | \n",
" 2022-08-22 06:48:40 | \n",
" 60.952214 | \n",
" 10.008699 | \n",
" 0 days 01:48:15 | \n",
"
\n",
" \n",
" 2 | \n",
" 73 | \n",
" 2022-08-22 11:58:03 | \n",
" 2022-08-22 12:21:11 | \n",
" 44.861855 | \n",
" 6.668674 | \n",
" 0 days 00:23:08 | \n",
"
\n",
" \n",
" 3 | \n",
" 73 | \n",
" 2022-08-22 19:55:54 | \n",
" 2022-08-22 22:37:06 | \n",
" 26.679683 | \n",
" 5.725053 | \n",
" 0 days 02:41:12 | \n",
"
\n",
" \n",
" 4 | \n",
" 73 | \n",
" 2022-08-22 10:55:57 | \n",
" 2022-08-22 13:03:49 | \n",
" 56.449703 | \n",
" 3.550615 | \n",
" 0 days 02:07:52 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 680 | \n",
" 56 | \n",
" 2022-08-22 05:41:40 | \n",
" 2022-08-22 06:52:23 | \n",
" 29.205601 | \n",
" 8.796899 | \n",
" 0 days 01:10:43 | \n",
"
\n",
" \n",
" 681 | \n",
" 56 | \n",
" 2022-08-22 00:34:24 | \n",
" 2022-08-22 02:53:00 | \n",
" 62.360221 | \n",
" 5.515841 | \n",
" 0 days 02:18:36 | \n",
"
\n",
" \n",
" 682 | \n",
" 56 | \n",
" 2022-08-22 19:02:12 | \n",
" 2022-08-22 20:34:31 | \n",
" 111.759254 | \n",
" 8.484224 | \n",
" 0 days 01:32:19 | \n",
"
\n",
" \n",
" 683 | \n",
" 56 | \n",
" 2022-08-22 02:01:12 | \n",
" 2022-08-22 02:41:58 | \n",
" 45.395829 | \n",
" 6.123383 | \n",
" 0 days 00:40:46 | \n",
"
\n",
" \n",
" 684 | \n",
" 56 | \n",
" 2022-08-22 07:17:09 | \n",
" 2022-08-22 07:48:40 | \n",
" 20.969945 | \n",
" 7.003565 | \n",
" 0 days 00:31:31 | \n",
"
\n",
" \n",
"
\n",
"
685 rows × 6 columns
\n",
"
"
],
"text/plain": [
" carnum start end distance gas \\\n",
"0 73 2022-08-22 04:57:52 2022-08-22 05:48:15 98.863620 4.842427 \n",
"1 73 2022-08-22 05:00:25 2022-08-22 06:48:40 60.952214 10.008699 \n",
"2 73 2022-08-22 11:58:03 2022-08-22 12:21:11 44.861855 6.668674 \n",
"3 73 2022-08-22 19:55:54 2022-08-22 22:37:06 26.679683 5.725053 \n",
"4 73 2022-08-22 10:55:57 2022-08-22 13:03:49 56.449703 3.550615 \n",
".. ... ... ... ... ... \n",
"680 56 2022-08-22 05:41:40 2022-08-22 06:52:23 29.205601 8.796899 \n",
"681 56 2022-08-22 00:34:24 2022-08-22 02:53:00 62.360221 5.515841 \n",
"682 56 2022-08-22 19:02:12 2022-08-22 20:34:31 111.759254 8.484224 \n",
"683 56 2022-08-22 02:01:12 2022-08-22 02:41:58 45.395829 6.123383 \n",
"684 56 2022-08-22 07:17:09 2022-08-22 07:48:40 20.969945 7.003565 \n",
"\n",
" time \n",
"0 0 days 00:50:23 \n",
"1 0 days 01:48:15 \n",
"2 0 days 00:23:08 \n",
"3 0 days 02:41:12 \n",
"4 0 days 02:07:52 \n",
".. ... \n",
"680 0 days 01:10:43 \n",
"681 0 days 02:18:36 \n",
"682 0 days 01:32:19 \n",
"683 0 days 00:40:46 \n",
"684 0 days 00:31:31 \n",
"\n",
"[685 rows x 6 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#compute trip times\n",
"df[triptime] = df.end - df.start\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6a1526cd-c9b6-431e-9b89-508cb44e53f8",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" carnum | \n",
" distance | \n",
" gas | \n",
" time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 73 | \n",
" 98.863620 | \n",
" 4.842427 | \n",
" 0 days 00:50:23 | \n",
"
\n",
" \n",
" 1 | \n",
" 73 | \n",
" 60.952214 | \n",
" 10.008699 | \n",
" 0 days 01:48:15 | \n",
"
\n",
" \n",
" 2 | \n",
" 73 | \n",
" 44.861855 | \n",
" 6.668674 | \n",
" 0 days 00:23:08 | \n",
"
\n",
" \n",
" 3 | \n",
" 73 | \n",
" 26.679683 | \n",
" 5.725053 | \n",
" 0 days 02:41:12 | \n",
"
\n",
" \n",
" 4 | \n",
" 73 | \n",
" 56.449703 | \n",
" 3.550615 | \n",
" 0 days 02:07:52 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 680 | \n",
" 56 | \n",
" 29.205601 | \n",
" 8.796899 | \n",
" 0 days 01:10:43 | \n",
"
\n",
" \n",
" 681 | \n",
" 56 | \n",
" 62.360221 | \n",
" 5.515841 | \n",
" 0 days 02:18:36 | \n",
"
\n",
" \n",
" 682 | \n",
" 56 | \n",
" 111.759254 | \n",
" 8.484224 | \n",
" 0 days 01:32:19 | \n",
"
\n",
" \n",
" 683 | \n",
" 56 | \n",
" 45.395829 | \n",
" 6.123383 | \n",
" 0 days 00:40:46 | \n",
"
\n",
" \n",
" 684 | \n",
" 56 | \n",
" 20.969945 | \n",
" 7.003565 | \n",
" 0 days 00:31:31 | \n",
"
\n",
" \n",
"
\n",
"
685 rows × 4 columns
\n",
"
"
],
"text/plain": [
" carnum distance gas time\n",
"0 73 98.863620 4.842427 0 days 00:50:23\n",
"1 73 60.952214 10.008699 0 days 01:48:15\n",
"2 73 44.861855 6.668674 0 days 00:23:08\n",
"3 73 26.679683 5.725053 0 days 02:41:12\n",
"4 73 56.449703 3.550615 0 days 02:07:52\n",
".. ... ... ... ...\n",
"680 56 29.205601 8.796899 0 days 01:10:43\n",
"681 56 62.360221 5.515841 0 days 02:18:36\n",
"682 56 111.759254 8.484224 0 days 01:32:19\n",
"683 56 45.395829 6.123383 0 days 00:40:46\n",
"684 56 20.969945 7.003565 0 days 00:31:31\n",
"\n",
"[685 rows x 4 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#get rid of start and end - no longer needed\n",
"df.drop(columns=[start,end],inplace=True)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a1083c0e-8af9-4a73-869d-6ab18c27c222",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" distance | \n",
" gas | \n",
" time | \n",
"
\n",
" \n",
" carnum | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" 693.396753 | \n",
" 78.110310 | \n",
" 0 days 12:52:05 | \n",
"
\n",
" \n",
" 2 | \n",
" 981.044936 | \n",
" 100.654307 | \n",
" 0 days 18:20:12 | \n",
"
\n",
" \n",
" 3 | \n",
" 456.638354 | \n",
" 46.209141 | \n",
" 0 days 08:14:21 | \n",
"
\n",
" \n",
" 4 | \n",
" 392.063016 | \n",
" 44.488116 | \n",
" 0 days 10:02:49 | \n",
"
\n",
" \n",
" 5 | \n",
" 777.309219 | \n",
" 94.453047 | \n",
" 0 days 19:19:18 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 93 | \n",
" 577.798733 | \n",
" 75.810127 | \n",
" 0 days 16:47:56 | \n",
"
\n",
" \n",
" 94 | \n",
" 1172.460418 | \n",
" 107.900125 | \n",
" 1 days 02:12:58 | \n",
"
\n",
" \n",
" 97 | \n",
" 1581.524745 | \n",
" 130.386475 | \n",
" 1 days 05:07:45 | \n",
"
\n",
" \n",
" 98 | \n",
" 1086.025420 | \n",
" 121.220634 | \n",
" 0 days 13:33:35 | \n",
"
\n",
" \n",
" 99 | \n",
" 394.130102 | \n",
" 35.015068 | \n",
" 0 days 09:46:12 | \n",
"
\n",
" \n",
"
\n",
"
64 rows × 3 columns
\n",
"
"
],
"text/plain": [
" distance gas time\n",
"carnum \n",
"1 693.396753 78.110310 0 days 12:52:05\n",
"2 981.044936 100.654307 0 days 18:20:12\n",
"3 456.638354 46.209141 0 days 08:14:21\n",
"4 392.063016 44.488116 0 days 10:02:49\n",
"5 777.309219 94.453047 0 days 19:19:18\n",
"... ... ... ...\n",
"93 577.798733 75.810127 0 days 16:47:56\n",
"94 1172.460418 107.900125 1 days 02:12:58\n",
"97 1581.524745 130.386475 1 days 05:07:45\n",
"98 1086.025420 121.220634 0 days 13:33:35\n",
"99 394.130102 35.015068 0 days 09:46:12\n",
"\n",
"[64 rows x 3 columns]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#get totals by car\n",
"tots = df.groupby(carnum).sum(numeric_only=False) # need numeric_only=False so the time column is included\n",
"tots"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e2e20634-6e9d-4fdd-858a-f99dd2e1c252",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" carnum | \n",
" distance | \n",
" gas | \n",
" time | \n",
" mileage | \n",
" speed | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 693.396753 | \n",
" 78.110310 | \n",
" 0 days 12:52:05 | \n",
" 8.877148 | \n",
" 53.885123 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" 981.044936 | \n",
" 100.654307 | \n",
" 0 days 18:20:12 | \n",
" 9.746676 | \n",
" 53.501814 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" 456.638354 | \n",
" 46.209141 | \n",
" 0 days 08:14:21 | \n",
" 9.881992 | \n",
" 55.422881 | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" 392.063016 | \n",
" 44.488116 | \n",
" 0 days 10:02:49 | \n",
" 8.812758 | \n",
" 39.023110 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" 777.309219 | \n",
" 94.453047 | \n",
" 0 days 19:19:18 | \n",
" 8.229583 | \n",
" 40.229926 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 59 | \n",
" 93 | \n",
" 577.798733 | \n",
" 75.810127 | \n",
" 0 days 16:47:56 | \n",
" 7.621656 | \n",
" 34.395057 | \n",
"
\n",
" \n",
" 60 | \n",
" 94 | \n",
" 1172.460418 | \n",
" 107.900125 | \n",
" 1 days 02:12:58 | \n",
" 10.866164 | \n",
" 44.722896 | \n",
"
\n",
" \n",
" 61 | \n",
" 97 | \n",
" 1581.524745 | \n",
" 130.386475 | \n",
" 1 days 05:07:45 | \n",
" 12.129515 | \n",
" 54.293512 | \n",
"
\n",
" \n",
" 62 | \n",
" 98 | \n",
" 1086.025420 | \n",
" 121.220634 | \n",
" 0 days 13:33:35 | \n",
" 8.959081 | \n",
" 80.092011 | \n",
"
\n",
" \n",
" 63 | \n",
" 99 | \n",
" 394.130102 | \n",
" 35.015068 | \n",
" 0 days 09:46:12 | \n",
" 11.256014 | \n",
" 40.340850 | \n",
"
\n",
" \n",
"
\n",
"
64 rows × 6 columns
\n",
"
"
],
"text/plain": [
" carnum distance gas time mileage speed\n",
"0 1 693.396753 78.110310 0 days 12:52:05 8.877148 53.885123\n",
"1 2 981.044936 100.654307 0 days 18:20:12 9.746676 53.501814\n",
"2 3 456.638354 46.209141 0 days 08:14:21 9.881992 55.422881\n",
"3 4 392.063016 44.488116 0 days 10:02:49 8.812758 39.023110\n",
"4 5 777.309219 94.453047 0 days 19:19:18 8.229583 40.229926\n",
".. ... ... ... ... ... ...\n",
"59 93 577.798733 75.810127 0 days 16:47:56 7.621656 34.395057\n",
"60 94 1172.460418 107.900125 1 days 02:12:58 10.866164 44.722896\n",
"61 97 1581.524745 130.386475 1 days 05:07:45 12.129515 54.293512\n",
"62 98 1086.025420 121.220634 0 days 13:33:35 8.959081 80.092011\n",
"63 99 394.130102 35.015068 0 days 09:46:12 11.256014 40.340850\n",
"\n",
"[64 rows x 6 columns]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#compute mileage and speed\n",
"tots[mileage] = tots.distance / tots.gas\n",
"tots[speed] = tots.distance / tots.time.dt.total_seconds() * 3600\n",
"tots.reset_index(inplace=True)\n",
"tots"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "1cfc9b34-5902-415f-ba0c-cab4d120a738",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" carnum | \n",
" distance | \n",
" gas | \n",
" time | \n",
" mileage | \n",
" speed | \n",
"
\n",
" \n",
" \n",
" \n",
" 16 | \n",
" 26 | \n",
" 554.406954 | \n",
" 33.596612 | \n",
" 0 days 04:06:56 | \n",
" 16.501871 | \n",
" 134.710113 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" carnum distance gas time mileage speed\n",
"16 26 554.406954 33.596612 0 days 04:06:56 16.501871 134.710113"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#show car with best mileage\n",
"tots[tots.mileage == tots.mileage.max()]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "21280939-c8f8-46d0-9cdc-e4487534a9f9",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" carnum | \n",
" distance | \n",
" gas | \n",
" time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 9 | \n",
" 9 | \n",
" 9 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" 14 | \n",
" 14 | \n",
" 14 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" 5 | \n",
" 5 | \n",
" 5 | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" 7 | \n",
" 7 | \n",
" 7 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" 14 | \n",
" 14 | \n",
" 14 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 59 | \n",
" 93 | \n",
" 10 | \n",
" 10 | \n",
" 10 | \n",
"
\n",
" \n",
" 60 | \n",
" 94 | \n",
" 16 | \n",
" 16 | \n",
" 16 | \n",
"
\n",
" \n",
" 61 | \n",
" 97 | \n",
" 20 | \n",
" 20 | \n",
" 20 | \n",
"
\n",
" \n",
" 62 | \n",
" 98 | \n",
" 15 | \n",
" 15 | \n",
" 15 | \n",
"
\n",
" \n",
" 63 | \n",
" 99 | \n",
" 6 | \n",
" 6 | \n",
" 6 | \n",
"
\n",
" \n",
"
\n",
"
64 rows × 4 columns
\n",
"
"
],
"text/plain": [
" carnum distance gas time\n",
"0 1 9 9 9\n",
"1 2 14 14 14\n",
"2 3 5 5 5\n",
"3 4 7 7 7\n",
"4 5 14 14 14\n",
".. ... ... ... ...\n",
"59 93 10 10 10\n",
"60 94 16 16 16\n",
"61 97 20 20 20\n",
"62 98 15 15 15\n",
"63 99 6 6 6\n",
"\n",
"[64 rows x 4 columns]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#show car with the most trips\n",
"trips = df.groupby(carnum).count().reset_index()\n",
"trips"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "ed60416d-a1b3-494d-8b1d-21e0d424c15e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" carnum | \n",
" distance | \n",
" gas | \n",
" time | \n",
"
\n",
" \n",
" \n",
" \n",
" 28 | \n",
" 49 | \n",
" 30 | \n",
" 30 | \n",
" 30 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" carnum distance gas time\n",
"28 49 30 30 30"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trips[trips.distance == trips.distance.max()]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "3e6b964d-a051-4167-bca0-a53ab778748c",
"metadata": {},
"outputs": [],
"source": [
"tots[[carnum,speed,mileage]].to_excel(os.path.join('files','car_results.xlsx'),index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8e0c2ff2-ddb1-4bc5-bc0d-b3de22eb1c9d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}