{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "d5ee1824-dbed-4e1e-81d5-c68ed0639538",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 1\n",
"1 16\n",
"2 31\n",
"3 46\n",
"4 61\n",
" ... \n",
"62 931\n",
"63 946\n",
"64 961\n",
"65 976\n",
"66 991\n",
"Length: 67, dtype: int64"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"pd.Series(range(1,1000,15))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "42729008-00a8-43d0-82c5-e9d27de2a927",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 1\n",
"1 2\n",
"2 3\n",
"3 4\n",
"4 5\n",
" ... \n",
"994 995\n",
"995 996\n",
"996 997\n",
"997 998\n",
"998 999\n",
"Name: ordernumber, Length: 999, dtype: int64"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.Series(range(1,1000),name='ordernumber')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "478a3b5d-c490-4f67-92a9-a786413ab7c2",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 3 | \n",
" 4 | \n",
" 5 | \n",
" 6 | \n",
" 7 | \n",
" 8 | \n",
" 9 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0.051460 | \n",
" 0.345604 | \n",
" 0.791156 | \n",
" 0.440672 | \n",
" 0.450625 | \n",
" 0.980399 | \n",
" 0.405555 | \n",
" 0.661131 | \n",
" 0.778248 | \n",
" 0.514650 | \n",
"
\n",
" \n",
" 1 | \n",
" 0.824818 | \n",
" 0.828941 | \n",
" 0.884023 | \n",
" 0.760136 | \n",
" 0.350469 | \n",
" 0.289411 | \n",
" 0.043574 | \n",
" 0.836360 | \n",
" 0.890852 | \n",
" 0.212008 | \n",
"
\n",
" \n",
" 2 | \n",
" 0.915531 | \n",
" 0.110926 | \n",
" 0.394650 | \n",
" 0.854019 | \n",
" 0.690907 | \n",
" 0.487290 | \n",
" 0.326002 | \n",
" 0.310439 | \n",
" 0.218654 | \n",
" 0.268796 | \n",
"
\n",
" \n",
" 3 | \n",
" 0.510951 | \n",
" 0.805179 | \n",
" 0.909292 | \n",
" 0.407076 | \n",
" 0.993812 | \n",
" 0.089341 | \n",
" 0.615807 | \n",
" 0.583266 | \n",
" 0.542803 | \n",
" 0.095077 | \n",
"
\n",
" \n",
" 4 | \n",
" 0.960893 | \n",
" 0.979636 | \n",
" 0.012998 | \n",
" 0.805010 | \n",
" 0.704081 | \n",
" 0.738408 | \n",
" 0.760624 | \n",
" 0.845298 | \n",
" 0.391842 | \n",
" 0.371173 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 95 | \n",
" 0.230657 | \n",
" 0.095324 | \n",
" 0.356832 | \n",
" 0.228042 | \n",
" 0.847167 | \n",
" 0.777826 | \n",
" 0.460811 | \n",
" 0.784149 | \n",
" 0.173706 | \n",
" 0.585010 | \n",
"
\n",
" \n",
" 96 | \n",
" 0.522313 | \n",
" 0.174966 | \n",
" 0.448625 | \n",
" 0.520422 | \n",
" 0.679586 | \n",
" 0.065859 | \n",
" 0.867442 | \n",
" 0.298666 | \n",
" 0.150284 | \n",
" 0.950080 | \n",
"
\n",
" \n",
" 97 | \n",
" 0.841830 | \n",
" 0.479370 | \n",
" 0.344530 | \n",
" 0.827816 | \n",
" 0.032871 | \n",
" 0.716897 | \n",
" 0.732730 | \n",
" 0.060178 | \n",
" 0.645426 | \n",
" 0.530073 | \n",
"
\n",
" \n",
" 98 | \n",
" 0.312104 | \n",
" 0.981484 | \n",
" 0.759550 | \n",
" 0.262574 | \n",
" 0.337067 | \n",
" 0.239735 | \n",
" 0.500450 | \n",
" 0.797333 | \n",
" 0.011523 | \n",
" 0.275411 | \n",
"
\n",
" \n",
" 99 | \n",
" 0.230630 | \n",
" 0.560744 | \n",
" 0.337111 | \n",
" 0.414382 | \n",
" 0.220704 | \n",
" 0.807170 | \n",
" 0.375692 | \n",
" 0.250978 | \n",
" 0.164241 | \n",
" 0.490498 | \n",
"
\n",
" \n",
"
\n",
"
100 rows × 10 columns
\n",
"
"
],
"text/plain": [
" 0 1 2 3 4 5 6 \\\n",
"0 0.051460 0.345604 0.791156 0.440672 0.450625 0.980399 0.405555 \n",
"1 0.824818 0.828941 0.884023 0.760136 0.350469 0.289411 0.043574 \n",
"2 0.915531 0.110926 0.394650 0.854019 0.690907 0.487290 0.326002 \n",
"3 0.510951 0.805179 0.909292 0.407076 0.993812 0.089341 0.615807 \n",
"4 0.960893 0.979636 0.012998 0.805010 0.704081 0.738408 0.760624 \n",
".. ... ... ... ... ... ... ... \n",
"95 0.230657 0.095324 0.356832 0.228042 0.847167 0.777826 0.460811 \n",
"96 0.522313 0.174966 0.448625 0.520422 0.679586 0.065859 0.867442 \n",
"97 0.841830 0.479370 0.344530 0.827816 0.032871 0.716897 0.732730 \n",
"98 0.312104 0.981484 0.759550 0.262574 0.337067 0.239735 0.500450 \n",
"99 0.230630 0.560744 0.337111 0.414382 0.220704 0.807170 0.375692 \n",
"\n",
" 7 8 9 \n",
"0 0.661131 0.778248 0.514650 \n",
"1 0.836360 0.890852 0.212008 \n",
"2 0.310439 0.218654 0.268796 \n",
"3 0.583266 0.542803 0.095077 \n",
"4 0.845298 0.391842 0.371173 \n",
".. ... ... ... \n",
"95 0.784149 0.173706 0.585010 \n",
"96 0.298666 0.150284 0.950080 \n",
"97 0.060178 0.645426 0.530073 \n",
"98 0.797333 0.011523 0.275411 \n",
"99 0.250978 0.164241 0.490498 \n",
"\n",
"[100 rows x 10 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"\n",
"pd.DataFrame(np.random.rand(100,10))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "b721e785-0bdb-472f-ad88-b248f10a9b74",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" a | \n",
" b | \n",
" c | \n",
" d | \n",
" e | \n",
" f | \n",
" g | \n",
" h | \n",
" i | \n",
" j | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0.606830 | \n",
" 0.601315 | \n",
" 0.910206 | \n",
" 0.831295 | \n",
" 0.119963 | \n",
" 0.833829 | \n",
" 0.822465 | \n",
" 0.857354 | \n",
" 0.013106 | \n",
" 0.051223 | \n",
"
\n",
" \n",
" 1 | \n",
" 0.516552 | \n",
" 0.374951 | \n",
" 0.690015 | \n",
" 0.846037 | \n",
" 0.985839 | \n",
" 0.519683 | \n",
" 0.711210 | \n",
" 0.256082 | \n",
" 0.879496 | \n",
" 0.414224 | \n",
"
\n",
" \n",
" 2 | \n",
" 0.377614 | \n",
" 0.225853 | \n",
" 0.063450 | \n",
" 0.852476 | \n",
" 0.866675 | \n",
" 0.262355 | \n",
" 0.983261 | \n",
" 0.821123 | \n",
" 0.122751 | \n",
" 0.994068 | \n",
"
\n",
" \n",
" 3 | \n",
" 0.643366 | \n",
" 0.931751 | \n",
" 0.320063 | \n",
" 0.271283 | \n",
" 0.148835 | \n",
" 0.112263 | \n",
" 0.171932 | \n",
" 0.746468 | \n",
" 0.835042 | \n",
" 0.309719 | \n",
"
\n",
" \n",
" 4 | \n",
" 0.818608 | \n",
" 0.609409 | \n",
" 0.681572 | \n",
" 0.809709 | \n",
" 0.650673 | \n",
" 0.914900 | \n",
" 0.934236 | \n",
" 0.729503 | \n",
" 0.729154 | \n",
" 0.117995 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 95 | \n",
" 0.291834 | \n",
" 0.896033 | \n",
" 0.380513 | \n",
" 0.211915 | \n",
" 0.611366 | \n",
" 0.339789 | \n",
" 0.380931 | \n",
" 0.406480 | \n",
" 0.966955 | \n",
" 0.272316 | \n",
"
\n",
" \n",
" 96 | \n",
" 0.834234 | \n",
" 0.582481 | \n",
" 0.327662 | \n",
" 0.061220 | \n",
" 0.665289 | \n",
" 0.721058 | \n",
" 0.339561 | \n",
" 0.198045 | \n",
" 0.472203 | \n",
" 0.574335 | \n",
"
\n",
" \n",
" 97 | \n",
" 0.709109 | \n",
" 0.651355 | \n",
" 0.470749 | \n",
" 0.250304 | \n",
" 0.274054 | \n",
" 0.843104 | \n",
" 0.137603 | \n",
" 0.990243 | \n",
" 0.712363 | \n",
" 0.346610 | \n",
"
\n",
" \n",
" 98 | \n",
" 0.257044 | \n",
" 0.044539 | \n",
" 0.574567 | \n",
" 0.197257 | \n",
" 0.360844 | \n",
" 0.964915 | \n",
" 0.283142 | \n",
" 0.987874 | \n",
" 0.795631 | \n",
" 0.720949 | \n",
"
\n",
" \n",
" 99 | \n",
" 0.162093 | \n",
" 0.591994 | \n",
" 0.127688 | \n",
" 0.580867 | \n",
" 0.850749 | \n",
" 0.215444 | \n",
" 0.320857 | \n",
" 0.174999 | \n",
" 0.737112 | \n",
" 0.286279 | \n",
"
\n",
" \n",
"
\n",
"
100 rows × 10 columns
\n",
"
"
],
"text/plain": [
" a b c d e f g \\\n",
"0 0.606830 0.601315 0.910206 0.831295 0.119963 0.833829 0.822465 \n",
"1 0.516552 0.374951 0.690015 0.846037 0.985839 0.519683 0.711210 \n",
"2 0.377614 0.225853 0.063450 0.852476 0.866675 0.262355 0.983261 \n",
"3 0.643366 0.931751 0.320063 0.271283 0.148835 0.112263 0.171932 \n",
"4 0.818608 0.609409 0.681572 0.809709 0.650673 0.914900 0.934236 \n",
".. ... ... ... ... ... ... ... \n",
"95 0.291834 0.896033 0.380513 0.211915 0.611366 0.339789 0.380931 \n",
"96 0.834234 0.582481 0.327662 0.061220 0.665289 0.721058 0.339561 \n",
"97 0.709109 0.651355 0.470749 0.250304 0.274054 0.843104 0.137603 \n",
"98 0.257044 0.044539 0.574567 0.197257 0.360844 0.964915 0.283142 \n",
"99 0.162093 0.591994 0.127688 0.580867 0.850749 0.215444 0.320857 \n",
"\n",
" h i j \n",
"0 0.857354 0.013106 0.051223 \n",
"1 0.256082 0.879496 0.414224 \n",
"2 0.821123 0.122751 0.994068 \n",
"3 0.746468 0.835042 0.309719 \n",
"4 0.729503 0.729154 0.117995 \n",
".. ... ... ... \n",
"95 0.406480 0.966955 0.272316 \n",
"96 0.198045 0.472203 0.574335 \n",
"97 0.990243 0.712363 0.346610 \n",
"98 0.987874 0.795631 0.720949 \n",
"99 0.174999 0.737112 0.286279 \n",
"\n",
"[100 rows x 10 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.DataFrame(np.random.rand(100,10),columns=list('abcdefghij'))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e141f22c-b59a-49a1-a73f-8541ee7ef798",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" date | \n",
" value | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2022-08-03 | \n",
" 0.229989 | \n",
"
\n",
" \n",
" 1 | \n",
" 2022-08-04 | \n",
" 0.356387 | \n",
"
\n",
" \n",
" 2 | \n",
" 2022-08-05 | \n",
" 0.264751 | \n",
"
\n",
" \n",
" 3 | \n",
" 2022-08-06 | \n",
" 0.435229 | \n",
"
\n",
" \n",
" 4 | \n",
" 2022-08-07 | \n",
" 0.898069 | \n",
"
\n",
" \n",
" 5 | \n",
" 2022-08-08 | \n",
" 0.967762 | \n",
"
\n",
" \n",
" 6 | \n",
" 2022-08-09 | \n",
" 0.369329 | \n",
"
\n",
" \n",
" 7 | \n",
" 2022-08-10 | \n",
" 0.348415 | \n",
"
\n",
" \n",
" 8 | \n",
" 2022-08-11 | \n",
" 0.082138 | \n",
"
\n",
" \n",
" 9 | \n",
" 2022-08-12 | \n",
" 0.111789 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" date value\n",
"0 2022-08-03 0.229989\n",
"1 2022-08-04 0.356387\n",
"2 2022-08-05 0.264751\n",
"3 2022-08-06 0.435229\n",
"4 2022-08-07 0.898069\n",
"5 2022-08-08 0.967762\n",
"6 2022-08-09 0.369329\n",
"7 2022-08-10 0.348415\n",
"8 2022-08-11 0.082138\n",
"9 2022-08-12 0.111789"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import datetime as dt\n",
"\n",
"s1 = pd.Series(pd.date_range(dt.date.today(),periods=10))\n",
"s2 = pd.Series(np.random.rand(10))\n",
"\n",
"pd.DataFrame(\n",
" {\n",
" 'date':s1,\n",
" 'value':s2\n",
" }\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8d60df6a-afda-47e9-8015-d71de7e4a494",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'date': DatetimeIndex(['2022-08-03', '2022-08-04', '2022-08-05', '2022-08-06',\n",
" '2022-08-07'],\n",
" dtype='datetime64[ns]', freq='D'),\n",
" 'value': array([0.3197036 , 0.52098407, 0.27933677, 0.57908009, 0.3376671 ])}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = {\n",
" 'date': pd.date_range(dt.date.today(),periods=5),\n",
" 'value': np.random.rand(5)\n",
"}\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "fd806f44-4bcb-4cb9-ad32-08db7c7fc373",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" date | \n",
" value | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2022-08-03 | \n",
" 0.319704 | \n",
"
\n",
" \n",
" 1 | \n",
" 2022-08-04 | \n",
" 0.520984 | \n",
"
\n",
" \n",
" 2 | \n",
" 2022-08-05 | \n",
" 0.279337 | \n",
"
\n",
" \n",
" 3 | \n",
" 2022-08-06 | \n",
" 0.579080 | \n",
"
\n",
" \n",
" 4 | \n",
" 2022-08-07 | \n",
" 0.337667 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" date value\n",
"0 2022-08-03 0.319704\n",
"1 2022-08-04 0.520984\n",
"2 2022-08-05 0.279337\n",
"3 2022-08-06 0.579080\n",
"4 2022-08-07 0.337667"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.DataFrame.from_dict(data)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "998dd959-8a23-460d-917a-ea95854e1567",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{0: [Timestamp('2022-08-03 00:00:00', freq='D'), 0.3808097904504616, 73],\n",
" 1: [Timestamp('2022-08-04 00:00:00', freq='D'), 0.5905372296633548, 50],\n",
" 2: [Timestamp('2022-08-05 00:00:00', freq='D'), 0.843340861241361, 33],\n",
" 3: [Timestamp('2022-08-06 00:00:00', freq='D'), 0.6522567142909306, 39],\n",
" 4: [Timestamp('2022-08-07 00:00:00', freq='D'), 0.8831824961187278, 4]}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = {\n",
" i: [d , np.random.rand(), np.random.randint(1,100)]\n",
" for i,d in enumerate(pd.date_range(dt.date.today(),periods=5))\n",
"}\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "46705db4-6747-44c7-8a8d-a43dbe2f0c9a",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" date | \n",
" float | \n",
" int | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2022-08-03 | \n",
" 0.380810 | \n",
" 73 | \n",
"
\n",
" \n",
" 1 | \n",
" 2022-08-04 | \n",
" 0.590537 | \n",
" 50 | \n",
"
\n",
" \n",
" 2 | \n",
" 2022-08-05 | \n",
" 0.843341 | \n",
" 33 | \n",
"
\n",
" \n",
" 3 | \n",
" 2022-08-06 | \n",
" 0.652257 | \n",
" 39 | \n",
"
\n",
" \n",
" 4 | \n",
" 2022-08-07 | \n",
" 0.883182 | \n",
" 4 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" date float int\n",
"0 2022-08-03 0.380810 73\n",
"1 2022-08-04 0.590537 50\n",
"2 2022-08-05 0.843341 33\n",
"3 2022-08-06 0.652257 39\n",
"4 2022-08-07 0.883182 4"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.DataFrame.from_dict(data,orient='index',columns=['date','float','int'])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "57fa2c92-b224-478c-81e8-ee5f4dac708f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'date': Timestamp('2022-08-03 00:00:00', freq='D'),\n",
" 'float': 0.1493111724826941,\n",
" 'int': 34},\n",
" {'date': Timestamp('2022-08-04 00:00:00', freq='D'),\n",
" 'float': 0.6487476480583498,\n",
" 'int': 36},\n",
" {'date': Timestamp('2022-08-05 00:00:00', freq='D'),\n",
" 'float': 0.8526625460198155,\n",
" 'int': 98},\n",
" {'date': Timestamp('2022-08-06 00:00:00', freq='D'),\n",
" 'float': 0.270909052559152,\n",
" 'int': 4},\n",
" {'date': Timestamp('2022-08-07 00:00:00', freq='D'),\n",
" 'float': 0.07841641226720986,\n",
" 'int': 43}]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = [\n",
" {'date': d, 'float': np.random.rand(), 'int': np.random.randint(1,100)}\n",
" for d in pd.date_range(dt.date.today(),periods=5)\n",
"]\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "4ac818fc-cc4d-4fc6-86e6-db99e80e7db0",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" date | \n",
" float | \n",
" int | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2022-08-03 | \n",
" 0.149311 | \n",
" 34 | \n",
"
\n",
" \n",
" 1 | \n",
" 2022-08-04 | \n",
" 0.648748 | \n",
" 36 | \n",
"
\n",
" \n",
" 2 | \n",
" 2022-08-05 | \n",
" 0.852663 | \n",
" 98 | \n",
"
\n",
" \n",
" 3 | \n",
" 2022-08-06 | \n",
" 0.270909 | \n",
" 4 | \n",
"
\n",
" \n",
" 4 | \n",
" 2022-08-07 | \n",
" 0.078416 | \n",
" 43 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" date float int\n",
"0 2022-08-03 0.149311 34\n",
"1 2022-08-04 0.648748 36\n",
"2 2022-08-05 0.852663 98\n",
"3 2022-08-06 0.270909 4\n",
"4 2022-08-07 0.078416 43"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.DataFrame.from_records(data)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "85001e4c-0012-4fd6-8478-6f53e48158a0",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" date | \n",
" GOOG | \n",
" AAPL | \n",
" AMZN | \n",
" FB | \n",
" NFLX | \n",
" MSFT | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2018-01-01 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" 1 | \n",
" 2018-01-08 | \n",
" 1.018172 | \n",
" 1.011943 | \n",
" 1.061881 | \n",
" 0.959968 | \n",
" 1.053526 | \n",
" 1.015988 | \n",
"
\n",
" \n",
" 2 | \n",
" 2018-01-15 | \n",
" 1.032008 | \n",
" 1.019771 | \n",
" 1.053240 | \n",
" 0.970243 | \n",
" 1.049860 | \n",
" 1.020524 | \n",
"
\n",
" \n",
" 3 | \n",
" 2018-01-22 | \n",
" 1.066783 | \n",
" 0.980057 | \n",
" 1.140676 | \n",
" 1.016858 | \n",
" 1.307681 | \n",
" 1.066561 | \n",
"
\n",
" \n",
" 4 | \n",
" 2018-01-29 | \n",
" 1.008773 | \n",
" 0.917143 | \n",
" 1.163374 | \n",
" 1.018357 | \n",
" 1.273537 | \n",
" 1.040708 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 100 | \n",
" 2019-12-02 | \n",
" 1.216280 | \n",
" 1.546914 | \n",
" 1.425061 | \n",
" 1.075997 | \n",
" 1.463641 | \n",
" 1.720717 | \n",
"
\n",
" \n",
" 101 | \n",
" 2019-12-09 | \n",
" 1.222821 | \n",
" 1.572286 | \n",
" 1.432660 | \n",
" 1.038855 | \n",
" 1.421496 | \n",
" 1.752239 | \n",
"
\n",
" \n",
" 102 | \n",
" 2019-12-16 | \n",
" 1.224418 | \n",
" 1.596800 | \n",
" 1.453455 | \n",
" 1.104094 | \n",
" 1.604362 | \n",
" 1.784896 | \n",
"
\n",
" \n",
" 103 | \n",
" 2019-12-23 | \n",
" 1.226504 | \n",
" 1.656000 | \n",
" 1.521226 | \n",
" 1.113728 | \n",
" 1.567170 | \n",
" 1.802472 | \n",
"
\n",
" \n",
" 104 | \n",
" 2019-12-30 | \n",
" 1.213014 | \n",
" 1.678000 | \n",
" 1.503360 | \n",
" 1.098475 | \n",
" 1.540883 | \n",
" 1.788185 | \n",
"
\n",
" \n",
"
\n",
"
105 rows × 7 columns
\n",
"
"
],
"text/plain": [
" date GOOG AAPL AMZN FB NFLX MSFT\n",
"0 2018-01-01 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000\n",
"1 2018-01-08 1.018172 1.011943 1.061881 0.959968 1.053526 1.015988\n",
"2 2018-01-15 1.032008 1.019771 1.053240 0.970243 1.049860 1.020524\n",
"3 2018-01-22 1.066783 0.980057 1.140676 1.016858 1.307681 1.066561\n",
"4 2018-01-29 1.008773 0.917143 1.163374 1.018357 1.273537 1.040708\n",
".. ... ... ... ... ... ... ...\n",
"100 2019-12-02 1.216280 1.546914 1.425061 1.075997 1.463641 1.720717\n",
"101 2019-12-09 1.222821 1.572286 1.432660 1.038855 1.421496 1.752239\n",
"102 2019-12-16 1.224418 1.596800 1.453455 1.104094 1.604362 1.784896\n",
"103 2019-12-23 1.226504 1.656000 1.521226 1.113728 1.567170 1.802472\n",
"104 2019-12-30 1.213014 1.678000 1.503360 1.098475 1.540883 1.788185\n",
"\n",
"[105 rows x 7 columns]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import os\n",
"pd.read_csv(os.path.join('files','stocks.csv'))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "8f791f79-fefc-4601-b409-22ba6235a1bd",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" a | \n",
" b | \n",
" c | \n",
" d | \n",
" e | \n",
" f | \n",
" g | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2018-01-01 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" 1 | \n",
" 2018-01-08 | \n",
" 1.018172 | \n",
" 1.011943 | \n",
" 1.061881 | \n",
" 0.959968 | \n",
" 1.053526 | \n",
" 1.015988 | \n",
"
\n",
" \n",
" 2 | \n",
" 2018-01-15 | \n",
" 1.032008 | \n",
" 1.019771 | \n",
" 1.053240 | \n",
" 0.970243 | \n",
" 1.049860 | \n",
" 1.020524 | \n",
"
\n",
" \n",
" 3 | \n",
" 2018-01-22 | \n",
" 1.066783 | \n",
" 0.980057 | \n",
" 1.140676 | \n",
" 1.016858 | \n",
" 1.307681 | \n",
" 1.066561 | \n",
"
\n",
" \n",
" 4 | \n",
" 2018-01-29 | \n",
" 1.008773 | \n",
" 0.917143 | \n",
" 1.163374 | \n",
" 1.018357 | \n",
" 1.273537 | \n",
" 1.040708 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 100 | \n",
" 2019-12-02 | \n",
" 1.216280 | \n",
" 1.546914 | \n",
" 1.425061 | \n",
" 1.075997 | \n",
" 1.463641 | \n",
" 1.720717 | \n",
"
\n",
" \n",
" 101 | \n",
" 2019-12-09 | \n",
" 1.222821 | \n",
" 1.572286 | \n",
" 1.432660 | \n",
" 1.038855 | \n",
" 1.421496 | \n",
" 1.752239 | \n",
"
\n",
" \n",
" 102 | \n",
" 2019-12-16 | \n",
" 1.224418 | \n",
" 1.596800 | \n",
" 1.453455 | \n",
" 1.104094 | \n",
" 1.604362 | \n",
" 1.784896 | \n",
"
\n",
" \n",
" 103 | \n",
" 2019-12-23 | \n",
" 1.226504 | \n",
" 1.656000 | \n",
" 1.521226 | \n",
" 1.113728 | \n",
" 1.567170 | \n",
" 1.802472 | \n",
"
\n",
" \n",
" 104 | \n",
" 2019-12-30 | \n",
" 1.213014 | \n",
" 1.678000 | \n",
" 1.503360 | \n",
" 1.098475 | \n",
" 1.540883 | \n",
" 1.788185 | \n",
"
\n",
" \n",
"
\n",
"
105 rows × 7 columns
\n",
"
"
],
"text/plain": [
" a b c d e f g\n",
"0 2018-01-01 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000\n",
"1 2018-01-08 1.018172 1.011943 1.061881 0.959968 1.053526 1.015988\n",
"2 2018-01-15 1.032008 1.019771 1.053240 0.970243 1.049860 1.020524\n",
"3 2018-01-22 1.066783 0.980057 1.140676 1.016858 1.307681 1.066561\n",
"4 2018-01-29 1.008773 0.917143 1.163374 1.018357 1.273537 1.040708\n",
".. ... ... ... ... ... ... ...\n",
"100 2019-12-02 1.216280 1.546914 1.425061 1.075997 1.463641 1.720717\n",
"101 2019-12-09 1.222821 1.572286 1.432660 1.038855 1.421496 1.752239\n",
"102 2019-12-16 1.224418 1.596800 1.453455 1.104094 1.604362 1.784896\n",
"103 2019-12-23 1.226504 1.656000 1.521226 1.113728 1.567170 1.802472\n",
"104 2019-12-30 1.213014 1.678000 1.503360 1.098475 1.540883 1.788185\n",
"\n",
"[105 rows x 7 columns]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.read_csv(os.path.join('files','stocks-noheader.csv'),names=list('abcdefg'))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "f56477ad-921c-4957-81e0-998f5a4ac5d0",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" GOOG | \n",
" AAPL | \n",
" AMZN | \n",
" FB | \n",
" NFLX | \n",
" MSFT | \n",
"
\n",
" \n",
" date | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 2018-01-01 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" 2018-01-08 | \n",
" 1.018172 | \n",
" 1.011943 | \n",
" 1.061881 | \n",
" 0.959968 | \n",
" 1.053526 | \n",
" 1.015988 | \n",
"
\n",
" \n",
" 2018-01-15 | \n",
" 1.032008 | \n",
" 1.019771 | \n",
" 1.053240 | \n",
" 0.970243 | \n",
" 1.049860 | \n",
" 1.020524 | \n",
"
\n",
" \n",
" 2018-01-22 | \n",
" 1.066783 | \n",
" 0.980057 | \n",
" 1.140676 | \n",
" 1.016858 | \n",
" 1.307681 | \n",
" 1.066561 | \n",
"
\n",
" \n",
" 2018-01-29 | \n",
" 1.008773 | \n",
" 0.917143 | \n",
" 1.163374 | \n",
" 1.018357 | \n",
" 1.273537 | \n",
" 1.040708 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 2019-12-02 | \n",
" 1.216280 | \n",
" 1.546914 | \n",
" 1.425061 | \n",
" 1.075997 | \n",
" 1.463641 | \n",
" 1.720717 | \n",
"
\n",
" \n",
" 2019-12-09 | \n",
" 1.222821 | \n",
" 1.572286 | \n",
" 1.432660 | \n",
" 1.038855 | \n",
" 1.421496 | \n",
" 1.752239 | \n",
"
\n",
" \n",
" 2019-12-16 | \n",
" 1.224418 | \n",
" 1.596800 | \n",
" 1.453455 | \n",
" 1.104094 | \n",
" 1.604362 | \n",
" 1.784896 | \n",
"
\n",
" \n",
" 2019-12-23 | \n",
" 1.226504 | \n",
" 1.656000 | \n",
" 1.521226 | \n",
" 1.113728 | \n",
" 1.567170 | \n",
" 1.802472 | \n",
"
\n",
" \n",
" 2019-12-30 | \n",
" 1.213014 | \n",
" 1.678000 | \n",
" 1.503360 | \n",
" 1.098475 | \n",
" 1.540883 | \n",
" 1.788185 | \n",
"
\n",
" \n",
"
\n",
"
105 rows × 6 columns
\n",
"
"
],
"text/plain": [
" GOOG AAPL AMZN FB NFLX MSFT\n",
"date \n",
"2018-01-01 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000\n",
"2018-01-08 1.018172 1.011943 1.061881 0.959968 1.053526 1.015988\n",
"2018-01-15 1.032008 1.019771 1.053240 0.970243 1.049860 1.020524\n",
"2018-01-22 1.066783 0.980057 1.140676 1.016858 1.307681 1.066561\n",
"2018-01-29 1.008773 0.917143 1.163374 1.018357 1.273537 1.040708\n",
"... ... ... ... ... ... ...\n",
"2019-12-02 1.216280 1.546914 1.425061 1.075997 1.463641 1.720717\n",
"2019-12-09 1.222821 1.572286 1.432660 1.038855 1.421496 1.752239\n",
"2019-12-16 1.224418 1.596800 1.453455 1.104094 1.604362 1.784896\n",
"2019-12-23 1.226504 1.656000 1.521226 1.113728 1.567170 1.802472\n",
"2019-12-30 1.213014 1.678000 1.503360 1.098475 1.540883 1.788185\n",
"\n",
"[105 rows x 6 columns]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.read_csv(os.path.join('files','stocks.csv'),index_col='date')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "d863d2cc-4063-4695-95a6-4db9f078dc32",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" date | \n",
" GOOG | \n",
" AAPL | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2018-01-01 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" 1 | \n",
" 2018-01-08 | \n",
" 1.018172 | \n",
" 1.011943 | \n",
"
\n",
" \n",
" 2 | \n",
" 2018-01-15 | \n",
" 1.032008 | \n",
" 1.019771 | \n",
"
\n",
" \n",
" 3 | \n",
" 2018-01-22 | \n",
" 1.066783 | \n",
" 0.980057 | \n",
"
\n",
" \n",
" 4 | \n",
" 2018-01-29 | \n",
" 1.008773 | \n",
" 0.917143 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 100 | \n",
" 2019-12-02 | \n",
" 1.216280 | \n",
" 1.546914 | \n",
"
\n",
" \n",
" 101 | \n",
" 2019-12-09 | \n",
" 1.222821 | \n",
" 1.572286 | \n",
"
\n",
" \n",
" 102 | \n",
" 2019-12-16 | \n",
" 1.224418 | \n",
" 1.596800 | \n",
"
\n",
" \n",
" 103 | \n",
" 2019-12-23 | \n",
" 1.226504 | \n",
" 1.656000 | \n",
"
\n",
" \n",
" 104 | \n",
" 2019-12-30 | \n",
" 1.213014 | \n",
" 1.678000 | \n",
"
\n",
" \n",
"
\n",
"
105 rows × 3 columns
\n",
"
"
],
"text/plain": [
" date GOOG AAPL\n",
"0 2018-01-01 1.000000 1.000000\n",
"1 2018-01-08 1.018172 1.011943\n",
"2 2018-01-15 1.032008 1.019771\n",
"3 2018-01-22 1.066783 0.980057\n",
"4 2018-01-29 1.008773 0.917143\n",
".. ... ... ...\n",
"100 2019-12-02 1.216280 1.546914\n",
"101 2019-12-09 1.222821 1.572286\n",
"102 2019-12-16 1.224418 1.596800\n",
"103 2019-12-23 1.226504 1.656000\n",
"104 2019-12-30 1.213014 1.678000\n",
"\n",
"[105 rows x 3 columns]"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.read_csv(os.path.join('files','stocks.csv'),usecols=[0,1,2])"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "5048c5e5-32e3-4a70-ab20-1dd337e03254",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" date | \n",
" GOOG | \n",
" MSFT | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2018-01-01 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" 1 | \n",
" 2018-01-08 | \n",
" 1.018172 | \n",
" 1.015988 | \n",
"
\n",
" \n",
" 2 | \n",
" 2018-01-15 | \n",
" 1.032008 | \n",
" 1.020524 | \n",
"
\n",
" \n",
" 3 | \n",
" 2018-01-22 | \n",
" 1.066783 | \n",
" 1.066561 | \n",
"
\n",
" \n",
" 4 | \n",
" 2018-01-29 | \n",
" 1.008773 | \n",
" 1.040708 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 100 | \n",
" 2019-12-02 | \n",
" 1.216280 | \n",
" 1.720717 | \n",
"
\n",
" \n",
" 101 | \n",
" 2019-12-09 | \n",
" 1.222821 | \n",
" 1.752239 | \n",
"
\n",
" \n",
" 102 | \n",
" 2019-12-16 | \n",
" 1.224418 | \n",
" 1.784896 | \n",
"
\n",
" \n",
" 103 | \n",
" 2019-12-23 | \n",
" 1.226504 | \n",
" 1.802472 | \n",
"
\n",
" \n",
" 104 | \n",
" 2019-12-30 | \n",
" 1.213014 | \n",
" 1.788185 | \n",
"
\n",
" \n",
"
\n",
"
105 rows × 3 columns
\n",
"
"
],
"text/plain": [
" date GOOG MSFT\n",
"0 2018-01-01 1.000000 1.000000\n",
"1 2018-01-08 1.018172 1.015988\n",
"2 2018-01-15 1.032008 1.020524\n",
"3 2018-01-22 1.066783 1.066561\n",
"4 2018-01-29 1.008773 1.040708\n",
".. ... ... ...\n",
"100 2019-12-02 1.216280 1.720717\n",
"101 2019-12-09 1.222821 1.752239\n",
"102 2019-12-16 1.224418 1.784896\n",
"103 2019-12-23 1.226504 1.802472\n",
"104 2019-12-30 1.213014 1.788185\n",
"\n",
"[105 rows x 3 columns]"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv(os.path.join('files','stocks.csv'),usecols=['date','GOOG','MSFT'])\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "1e5c5813-6b5c-47bf-ba11-10bb8e2e8ae9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 2018-01-01\n",
"1 2018-01-08\n",
"2 2018-01-15\n",
"3 2018-01-22\n",
"4 2018-01-29\n",
" ... \n",
"100 2019-12-02\n",
"101 2019-12-09\n",
"102 2019-12-16\n",
"103 2019-12-23\n",
"104 2019-12-30\n",
"Name: date, Length: 105, dtype: object"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['date']"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "6a0485a0-c194-48bb-a656-43f69b3d1120",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 2018-01-01\n",
"1 2018-01-08\n",
"2 2018-01-15\n",
"3 2018-01-22\n",
"4 2018-01-29\n",
" ... \n",
"100 2019-12-02\n",
"101 2019-12-09\n",
"102 2019-12-16\n",
"103 2019-12-23\n",
"104 2019-12-30\n",
"Name: date, Length: 105, dtype: datetime64[ns]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv(os.path.join('files','stocks.csv'),usecols=['date','GOOG','MSFT'],parse_dates=['date'])\n",
"df['date']"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "4745a79c-9280-4622-b528-f9505b322e08",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Segment | \n",
" Country | \n",
" Product | \n",
" Discount Band | \n",
" Units Sold | \n",
" Manufacturing Price | \n",
" Sale Price | \n",
" Gross Sales | \n",
" Discounts | \n",
" Sales | \n",
" COGS | \n",
" Profit | \n",
" Date | \n",
" Month Number | \n",
" Month Name | \n",
" Year | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Government | \n",
" Canada | \n",
" Carretera | \n",
" None | \n",
" 1618.5 | \n",
" 3 | \n",
" 20 | \n",
" 32370.0 | \n",
" 0.00 | \n",
" 32370.00 | \n",
" 16185.0 | \n",
" 16185.00 | \n",
" 2014-01-01 | \n",
" 1 | \n",
" January | \n",
" 2014 | \n",
"
\n",
" \n",
" 1 | \n",
" Government | \n",
" Germany | \n",
" Carretera | \n",
" None | \n",
" 1321.0 | \n",
" 3 | \n",
" 20 | \n",
" 26420.0 | \n",
" 0.00 | \n",
" 26420.00 | \n",
" 13210.0 | \n",
" 13210.00 | \n",
" 2014-01-01 | \n",
" 1 | \n",
" January | \n",
" 2014 | \n",
"
\n",
" \n",
" 2 | \n",
" Midmarket | \n",
" France | \n",
" Carretera | \n",
" None | \n",
" 2178.0 | \n",
" 3 | \n",
" 15 | \n",
" 32670.0 | \n",
" 0.00 | \n",
" 32670.00 | \n",
" 21780.0 | \n",
" 10890.00 | \n",
" 2014-06-01 | \n",
" 6 | \n",
" June | \n",
" 2014 | \n",
"
\n",
" \n",
" 3 | \n",
" Midmarket | \n",
" Germany | \n",
" Carretera | \n",
" None | \n",
" 888.0 | \n",
" 3 | \n",
" 15 | \n",
" 13320.0 | \n",
" 0.00 | \n",
" 13320.00 | \n",
" 8880.0 | \n",
" 4440.00 | \n",
" 2014-06-01 | \n",
" 6 | \n",
" June | \n",
" 2014 | \n",
"
\n",
" \n",
" 4 | \n",
" Midmarket | \n",
" Mexico | \n",
" Carretera | \n",
" None | \n",
" 2470.0 | \n",
" 3 | \n",
" 15 | \n",
" 37050.0 | \n",
" 0.00 | \n",
" 37050.00 | \n",
" 24700.0 | \n",
" 12350.00 | \n",
" 2014-06-01 | \n",
" 6 | \n",
" June | \n",
" 2014 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 695 | \n",
" Small Business | \n",
" France | \n",
" Amarilla | \n",
" High | \n",
" 2475.0 | \n",
" 260 | \n",
" 300 | \n",
" 742500.0 | \n",
" 111375.00 | \n",
" 631125.00 | \n",
" 618750.0 | \n",
" 12375.00 | \n",
" 2014-03-01 | \n",
" 3 | \n",
" March | \n",
" 2014 | \n",
"
\n",
" \n",
" 696 | \n",
" Small Business | \n",
" Mexico | \n",
" Amarilla | \n",
" High | \n",
" 546.0 | \n",
" 260 | \n",
" 300 | \n",
" 163800.0 | \n",
" 24570.00 | \n",
" 139230.00 | \n",
" 136500.0 | \n",
" 2730.00 | \n",
" 2014-10-01 | \n",
" 10 | \n",
" October | \n",
" 2014 | \n",
"
\n",
" \n",
" 697 | \n",
" Government | \n",
" Mexico | \n",
" Montana | \n",
" High | \n",
" 1368.0 | \n",
" 5 | \n",
" 7 | \n",
" 9576.0 | \n",
" 1436.40 | \n",
" 8139.60 | \n",
" 6840.0 | \n",
" 1299.60 | \n",
" 2014-02-01 | \n",
" 2 | \n",
" February | \n",
" 2014 | \n",
"
\n",
" \n",
" 698 | \n",
" Government | \n",
" Canada | \n",
" Paseo | \n",
" High | \n",
" 723.0 | \n",
" 10 | \n",
" 7 | \n",
" 5061.0 | \n",
" 759.15 | \n",
" 4301.85 | \n",
" 3615.0 | \n",
" 686.85 | \n",
" 2014-04-01 | \n",
" 4 | \n",
" April | \n",
" 2014 | \n",
"
\n",
" \n",
" 699 | \n",
" Channel Partners | \n",
" United States of America | \n",
" VTT | \n",
" High | \n",
" 1806.0 | \n",
" 250 | \n",
" 12 | \n",
" 21672.0 | \n",
" 3250.80 | \n",
" 18421.20 | \n",
" 5418.0 | \n",
" 13003.20 | \n",
" 2014-05-01 | \n",
" 5 | \n",
" May | \n",
" 2014 | \n",
"
\n",
" \n",
"
\n",
"
700 rows × 16 columns
\n",
"
"
],
"text/plain": [
" Segment Country Product Discount Band \\\n",
"0 Government Canada Carretera None \n",
"1 Government Germany Carretera None \n",
"2 Midmarket France Carretera None \n",
"3 Midmarket Germany Carretera None \n",
"4 Midmarket Mexico Carretera None \n",
".. ... ... ... ... \n",
"695 Small Business France Amarilla High \n",
"696 Small Business Mexico Amarilla High \n",
"697 Government Mexico Montana High \n",
"698 Government Canada Paseo High \n",
"699 Channel Partners United States of America VTT High \n",
"\n",
" Units Sold Manufacturing Price Sale Price Gross Sales Discounts \\\n",
"0 1618.5 3 20 32370.0 0.00 \n",
"1 1321.0 3 20 26420.0 0.00 \n",
"2 2178.0 3 15 32670.0 0.00 \n",
"3 888.0 3 15 13320.0 0.00 \n",
"4 2470.0 3 15 37050.0 0.00 \n",
".. ... ... ... ... ... \n",
"695 2475.0 260 300 742500.0 111375.00 \n",
"696 546.0 260 300 163800.0 24570.00 \n",
"697 1368.0 5 7 9576.0 1436.40 \n",
"698 723.0 10 7 5061.0 759.15 \n",
"699 1806.0 250 12 21672.0 3250.80 \n",
"\n",
" Sales COGS Profit Date Month Number Month Name Year \n",
"0 32370.00 16185.0 16185.00 2014-01-01 1 January 2014 \n",
"1 26420.00 13210.0 13210.00 2014-01-01 1 January 2014 \n",
"2 32670.00 21780.0 10890.00 2014-06-01 6 June 2014 \n",
"3 13320.00 8880.0 4440.00 2014-06-01 6 June 2014 \n",
"4 37050.00 24700.0 12350.00 2014-06-01 6 June 2014 \n",
".. ... ... ... ... ... ... ... \n",
"695 631125.00 618750.0 12375.00 2014-03-01 3 March 2014 \n",
"696 139230.00 136500.0 2730.00 2014-10-01 10 October 2014 \n",
"697 8139.60 6840.0 1299.60 2014-02-01 2 February 2014 \n",
"698 4301.85 3615.0 686.85 2014-04-01 4 April 2014 \n",
"699 18421.20 5418.0 13003.20 2014-05-01 5 May 2014 \n",
"\n",
"[700 rows x 16 columns]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.read_excel(os.path.join('files','Sample.xlsx'))"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "256984fd-96cb-4bd6-a910-2e57f632fd16",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" date | \n",
" GOOG | \n",
" AAPL | \n",
" AMZN | \n",
" FB | \n",
" NFLX | \n",
" MSFT | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2018-01-01 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" 1 | \n",
" 2018-01-08 | \n",
" 1.018172 | \n",
" 1.011943 | \n",
" 1.061881 | \n",
" 0.959968 | \n",
" 1.053526 | \n",
" 1.015988 | \n",
"
\n",
" \n",
" 2 | \n",
" 2018-01-15 | \n",
" 1.032008 | \n",
" 1.019771 | \n",
" 1.053240 | \n",
" 0.970243 | \n",
" 1.049860 | \n",
" 1.020524 | \n",
"
\n",
" \n",
" 3 | \n",
" 2018-01-22 | \n",
" 1.066783 | \n",
" 0.980057 | \n",
" 1.140676 | \n",
" 1.016858 | \n",
" 1.307681 | \n",
" 1.066561 | \n",
"
\n",
" \n",
" 4 | \n",
" 2018-01-29 | \n",
" 1.008773 | \n",
" 0.917143 | \n",
" 1.163374 | \n",
" 1.018357 | \n",
" 1.273537 | \n",
" 1.040708 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 100 | \n",
" 2019-12-02 | \n",
" 1.216280 | \n",
" 1.546914 | \n",
" 1.425061 | \n",
" 1.075997 | \n",
" 1.463641 | \n",
" 1.720717 | \n",
"
\n",
" \n",
" 101 | \n",
" 2019-12-09 | \n",
" 1.222821 | \n",
" 1.572286 | \n",
" 1.432660 | \n",
" 1.038855 | \n",
" 1.421496 | \n",
" 1.752239 | \n",
"
\n",
" \n",
" 102 | \n",
" 2019-12-16 | \n",
" 1.224418 | \n",
" 1.596800 | \n",
" 1.453455 | \n",
" 1.104094 | \n",
" 1.604362 | \n",
" 1.784896 | \n",
"
\n",
" \n",
" 103 | \n",
" 2019-12-23 | \n",
" 1.226504 | \n",
" 1.656000 | \n",
" 1.521226 | \n",
" 1.113728 | \n",
" 1.567170 | \n",
" 1.802472 | \n",
"
\n",
" \n",
" 104 | \n",
" 2019-12-30 | \n",
" 1.213014 | \n",
" 1.678000 | \n",
" 1.503360 | \n",
" 1.098475 | \n",
" 1.540883 | \n",
" 1.788185 | \n",
"
\n",
" \n",
"
\n",
"
105 rows × 7 columns
\n",
"
"
],
"text/plain": [
" date GOOG AAPL AMZN FB NFLX MSFT\n",
"0 2018-01-01 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000\n",
"1 2018-01-08 1.018172 1.011943 1.061881 0.959968 1.053526 1.015988\n",
"2 2018-01-15 1.032008 1.019771 1.053240 0.970243 1.049860 1.020524\n",
"3 2018-01-22 1.066783 0.980057 1.140676 1.016858 1.307681 1.066561\n",
"4 2018-01-29 1.008773 0.917143 1.163374 1.018357 1.273537 1.040708\n",
".. ... ... ... ... ... ... ...\n",
"100 2019-12-02 1.216280 1.546914 1.425061 1.075997 1.463641 1.720717\n",
"101 2019-12-09 1.222821 1.572286 1.432660 1.038855 1.421496 1.752239\n",
"102 2019-12-16 1.224418 1.596800 1.453455 1.104094 1.604362 1.784896\n",
"103 2019-12-23 1.226504 1.656000 1.521226 1.113728 1.567170 1.802472\n",
"104 2019-12-30 1.213014 1.678000 1.503360 1.098475 1.540883 1.788185\n",
"\n",
"[105 rows x 7 columns]"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.read_excel(os.path.join('files','Sample.xlsx'),sheet_name='Sheet2')"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "6fb38fe7-5a25-486e-a3b9-26b999cb6164",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Sheet1': Segment Country Product Discount Band \\\n",
" 0 Government Canada Carretera None \n",
" 1 Government Germany Carretera None \n",
" 2 Midmarket France Carretera None \n",
" 3 Midmarket Germany Carretera None \n",
" 4 Midmarket Mexico Carretera None \n",
" .. ... ... ... ... \n",
" 695 Small Business France Amarilla High \n",
" 696 Small Business Mexico Amarilla High \n",
" 697 Government Mexico Montana High \n",
" 698 Government Canada Paseo High \n",
" 699 Channel Partners United States of America VTT High \n",
" \n",
" Units Sold Manufacturing Price Sale Price Gross Sales Discounts \\\n",
" 0 1618.5 3 20 32370.0 0.00 \n",
" 1 1321.0 3 20 26420.0 0.00 \n",
" 2 2178.0 3 15 32670.0 0.00 \n",
" 3 888.0 3 15 13320.0 0.00 \n",
" 4 2470.0 3 15 37050.0 0.00 \n",
" .. ... ... ... ... ... \n",
" 695 2475.0 260 300 742500.0 111375.00 \n",
" 696 546.0 260 300 163800.0 24570.00 \n",
" 697 1368.0 5 7 9576.0 1436.40 \n",
" 698 723.0 10 7 5061.0 759.15 \n",
" 699 1806.0 250 12 21672.0 3250.80 \n",
" \n",
" Sales COGS Profit Date Month Number Month Name Year \n",
" 0 32370.00 16185.0 16185.00 2014-01-01 1 January 2014 \n",
" 1 26420.00 13210.0 13210.00 2014-01-01 1 January 2014 \n",
" 2 32670.00 21780.0 10890.00 2014-06-01 6 June 2014 \n",
" 3 13320.00 8880.0 4440.00 2014-06-01 6 June 2014 \n",
" 4 37050.00 24700.0 12350.00 2014-06-01 6 June 2014 \n",
" .. ... ... ... ... ... ... ... \n",
" 695 631125.00 618750.0 12375.00 2014-03-01 3 March 2014 \n",
" 696 139230.00 136500.0 2730.00 2014-10-01 10 October 2014 \n",
" 697 8139.60 6840.0 1299.60 2014-02-01 2 February 2014 \n",
" 698 4301.85 3615.0 686.85 2014-04-01 4 April 2014 \n",
" 699 18421.20 5418.0 13003.20 2014-05-01 5 May 2014 \n",
" \n",
" [700 rows x 16 columns],\n",
" 'Sheet2': date GOOG AAPL AMZN FB NFLX MSFT\n",
" 0 2018-01-01 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000\n",
" 1 2018-01-08 1.018172 1.011943 1.061881 0.959968 1.053526 1.015988\n",
" 2 2018-01-15 1.032008 1.019771 1.053240 0.970243 1.049860 1.020524\n",
" 3 2018-01-22 1.066783 0.980057 1.140676 1.016858 1.307681 1.066561\n",
" 4 2018-01-29 1.008773 0.917143 1.163374 1.018357 1.273537 1.040708\n",
" .. ... ... ... ... ... ... ...\n",
" 100 2019-12-02 1.216280 1.546914 1.425061 1.075997 1.463641 1.720717\n",
" 101 2019-12-09 1.222821 1.572286 1.432660 1.038855 1.421496 1.752239\n",
" 102 2019-12-16 1.224418 1.596800 1.453455 1.104094 1.604362 1.784896\n",
" 103 2019-12-23 1.226504 1.656000 1.521226 1.113728 1.567170 1.802472\n",
" 104 2019-12-30 1.213014 1.678000 1.503360 1.098475 1.540883 1.788185\n",
" \n",
" [105 rows x 7 columns]}"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.read_excel(os.path.join('files','Sample.xlsx'),sheet_name=None)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "05f509a0-bd8e-445e-b5f3-efda30ca2229",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 3 | \n",
" 4 | \n",
" 5 | \n",
" 6 | \n",
" 7 | \n",
" 8 | \n",
" 9 | \n",
" ... | \n",
" 20 | \n",
" 21 | \n",
" 22 | \n",
" 23 | \n",
" 24 | \n",
" 25 | \n",
" 26 | \n",
" 27 | \n",
" 28 | \n",
" 29 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0.901742 | \n",
" 0.868402 | \n",
" 0.626751 | \n",
" 0.805517 | \n",
" 0.702326 | \n",
" 0.635825 | \n",
" 0.081778 | \n",
" 0.370203 | \n",
" 0.119913 | \n",
" 0.797300 | \n",
" ... | \n",
" 0.907335 | \n",
" 0.242210 | \n",
" 0.860111 | \n",
" 0.764627 | \n",
" 0.243772 | \n",
" 0.744785 | \n",
" 0.944923 | \n",
" 0.991802 | \n",
" 0.775039 | \n",
" 0.412386 | \n",
"
\n",
" \n",
" 1 | \n",
" 0.491426 | \n",
" 0.584446 | \n",
" 0.525093 | \n",
" 0.719466 | \n",
" 0.765294 | \n",
" 0.368640 | \n",
" 0.439217 | \n",
" 0.130738 | \n",
" 0.202588 | \n",
" 0.948425 | \n",
" ... | \n",
" 0.469663 | \n",
" 0.990004 | \n",
" 0.864332 | \n",
" 0.768623 | \n",
" 0.451735 | \n",
" 0.677281 | \n",
" 0.016003 | \n",
" 0.733019 | \n",
" 0.439045 | \n",
" 0.404881 | \n",
"
\n",
" \n",
" 2 | \n",
" 0.798883 | \n",
" 0.821652 | \n",
" 0.390241 | \n",
" 0.376169 | \n",
" 0.809637 | \n",
" 0.485191 | \n",
" 0.535743 | \n",
" 0.961506 | \n",
" 0.333799 | \n",
" 0.040235 | \n",
" ... | \n",
" 0.597363 | \n",
" 0.163290 | \n",
" 0.551183 | \n",
" 0.110727 | \n",
" 0.180119 | \n",
" 0.188264 | \n",
" 0.309836 | \n",
" 0.129119 | \n",
" 0.233958 | \n",
" 0.301704 | \n",
"
\n",
" \n",
" 3 | \n",
" 0.374281 | \n",
" 0.025460 | \n",
" 0.466751 | \n",
" 0.811396 | \n",
" 0.470298 | \n",
" 0.685114 | \n",
" 0.795139 | \n",
" 0.375138 | \n",
" 0.708736 | \n",
" 0.113676 | \n",
" ... | \n",
" 0.916064 | \n",
" 0.663030 | \n",
" 0.230242 | \n",
" 0.624192 | \n",
" 0.407815 | \n",
" 0.740665 | \n",
" 0.504651 | \n",
" 0.021896 | \n",
" 0.235594 | \n",
" 0.978403 | \n",
"
\n",
" \n",
" 4 | \n",
" 0.260491 | \n",
" 0.177377 | \n",
" 0.962863 | \n",
" 0.133829 | \n",
" 0.716351 | \n",
" 0.557946 | \n",
" 0.907913 | \n",
" 0.872178 | \n",
" 0.256827 | \n",
" 0.723024 | \n",
" ... | \n",
" 0.416517 | \n",
" 0.845554 | \n",
" 0.001661 | \n",
" 0.000941 | \n",
" 0.205084 | \n",
" 0.327311 | \n",
" 0.065750 | \n",
" 0.462068 | \n",
" 0.800227 | \n",
" 0.652551 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 95 | \n",
" 0.384575 | \n",
" 0.808233 | \n",
" 0.410293 | \n",
" 0.546478 | \n",
" 0.363510 | \n",
" 0.550752 | \n",
" 0.865433 | \n",
" 0.263930 | \n",
" 0.089405 | \n",
" 0.020224 | \n",
" ... | \n",
" 0.634256 | \n",
" 0.488520 | \n",
" 0.682969 | \n",
" 0.964561 | \n",
" 0.899604 | \n",
" 0.378423 | \n",
" 0.644292 | \n",
" 0.677258 | \n",
" 0.353208 | \n",
" 0.098977 | \n",
"
\n",
" \n",
" 96 | \n",
" 0.972265 | \n",
" 0.855608 | \n",
" 0.431820 | \n",
" 0.887729 | \n",
" 0.095447 | \n",
" 0.013635 | \n",
" 0.005369 | \n",
" 0.053794 | \n",
" 0.947760 | \n",
" 0.156041 | \n",
" ... | \n",
" 0.914726 | \n",
" 0.640468 | \n",
" 0.527957 | \n",
" 0.277913 | \n",
" 0.429337 | \n",
" 0.589427 | \n",
" 0.609376 | \n",
" 0.701999 | \n",
" 0.274253 | \n",
" 0.105528 | \n",
"
\n",
" \n",
" 97 | \n",
" 0.443013 | \n",
" 0.070544 | \n",
" 0.189925 | \n",
" 0.031860 | \n",
" 0.706069 | \n",
" 0.678759 | \n",
" 0.608366 | \n",
" 0.090716 | \n",
" 0.644679 | \n",
" 0.498870 | \n",
" ... | \n",
" 0.685892 | \n",
" 0.890387 | \n",
" 0.888898 | \n",
" 0.443587 | \n",
" 0.018628 | \n",
" 0.549022 | \n",
" 0.642324 | \n",
" 0.479254 | \n",
" 0.050797 | \n",
" 0.228636 | \n",
"
\n",
" \n",
" 98 | \n",
" 0.077568 | \n",
" 0.949501 | \n",
" 0.485272 | \n",
" 0.578740 | \n",
" 0.499380 | \n",
" 0.327019 | \n",
" 0.343815 | \n",
" 0.874237 | \n",
" 0.294809 | \n",
" 0.293207 | \n",
" ... | \n",
" 0.765215 | \n",
" 0.099779 | \n",
" 0.944932 | \n",
" 0.646978 | \n",
" 0.565845 | \n",
" 0.961522 | \n",
" 0.042999 | \n",
" 0.745851 | \n",
" 0.070118 | \n",
" 0.014579 | \n",
"
\n",
" \n",
" 99 | \n",
" 0.155376 | \n",
" 0.957772 | \n",
" 0.817545 | \n",
" 0.087401 | \n",
" 0.692598 | \n",
" 0.468097 | \n",
" 0.913008 | \n",
" 0.567578 | \n",
" 0.247393 | \n",
" 0.620830 | \n",
" ... | \n",
" 0.392456 | \n",
" 0.260810 | \n",
" 0.912724 | \n",
" 0.179538 | \n",
" 0.363543 | \n",
" 0.810410 | \n",
" 0.292306 | \n",
" 0.195655 | \n",
" 0.623025 | \n",
" 0.853659 | \n",
"
\n",
" \n",
"
\n",
"
100 rows × 30 columns
\n",
"
"
],
"text/plain": [
" 0 1 2 3 4 5 6 \\\n",
"0 0.901742 0.868402 0.626751 0.805517 0.702326 0.635825 0.081778 \n",
"1 0.491426 0.584446 0.525093 0.719466 0.765294 0.368640 0.439217 \n",
"2 0.798883 0.821652 0.390241 0.376169 0.809637 0.485191 0.535743 \n",
"3 0.374281 0.025460 0.466751 0.811396 0.470298 0.685114 0.795139 \n",
"4 0.260491 0.177377 0.962863 0.133829 0.716351 0.557946 0.907913 \n",
".. ... ... ... ... ... ... ... \n",
"95 0.384575 0.808233 0.410293 0.546478 0.363510 0.550752 0.865433 \n",
"96 0.972265 0.855608 0.431820 0.887729 0.095447 0.013635 0.005369 \n",
"97 0.443013 0.070544 0.189925 0.031860 0.706069 0.678759 0.608366 \n",
"98 0.077568 0.949501 0.485272 0.578740 0.499380 0.327019 0.343815 \n",
"99 0.155376 0.957772 0.817545 0.087401 0.692598 0.468097 0.913008 \n",
"\n",
" 7 8 9 ... 20 21 22 23 \\\n",
"0 0.370203 0.119913 0.797300 ... 0.907335 0.242210 0.860111 0.764627 \n",
"1 0.130738 0.202588 0.948425 ... 0.469663 0.990004 0.864332 0.768623 \n",
"2 0.961506 0.333799 0.040235 ... 0.597363 0.163290 0.551183 0.110727 \n",
"3 0.375138 0.708736 0.113676 ... 0.916064 0.663030 0.230242 0.624192 \n",
"4 0.872178 0.256827 0.723024 ... 0.416517 0.845554 0.001661 0.000941 \n",
".. ... ... ... ... ... ... ... ... \n",
"95 0.263930 0.089405 0.020224 ... 0.634256 0.488520 0.682969 0.964561 \n",
"96 0.053794 0.947760 0.156041 ... 0.914726 0.640468 0.527957 0.277913 \n",
"97 0.090716 0.644679 0.498870 ... 0.685892 0.890387 0.888898 0.443587 \n",
"98 0.874237 0.294809 0.293207 ... 0.765215 0.099779 0.944932 0.646978 \n",
"99 0.567578 0.247393 0.620830 ... 0.392456 0.260810 0.912724 0.179538 \n",
"\n",
" 24 25 26 27 28 29 \n",
"0 0.243772 0.744785 0.944923 0.991802 0.775039 0.412386 \n",
"1 0.451735 0.677281 0.016003 0.733019 0.439045 0.404881 \n",
"2 0.180119 0.188264 0.309836 0.129119 0.233958 0.301704 \n",
"3 0.407815 0.740665 0.504651 0.021896 0.235594 0.978403 \n",
"4 0.205084 0.327311 0.065750 0.462068 0.800227 0.652551 \n",
".. ... ... ... ... ... ... \n",
"95 0.899604 0.378423 0.644292 0.677258 0.353208 0.098977 \n",
"96 0.429337 0.589427 0.609376 0.701999 0.274253 0.105528 \n",
"97 0.018628 0.549022 0.642324 0.479254 0.050797 0.228636 \n",
"98 0.565845 0.961522 0.042999 0.745851 0.070118 0.014579 \n",
"99 0.363543 0.810410 0.292306 0.195655 0.623025 0.853659 \n",
"\n",
"[100 rows x 30 columns]"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame(np.random.rand(100,30))\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "5154a714-0a30-4fbd-91d4-ac4f59e9176c",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 3 | \n",
" 4 | \n",
" 5 | \n",
" 6 | \n",
" 7 | \n",
" 8 | \n",
" 9 | \n",
" 10 | \n",
" 11 | \n",
" 12 | \n",
" 13 | \n",
" 14 | \n",
" 15 | \n",
" 16 | \n",
" 17 | \n",
" 18 | \n",
" 19 | \n",
" 20 | \n",
" 21 | \n",
" 22 | \n",
" 23 | \n",
" 24 | \n",
" 25 | \n",
" 26 | \n",
" 27 | \n",
" 28 | \n",
" 29 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0.901742 | \n",
" 0.868402 | \n",
" 0.626751 | \n",
" 0.805517 | \n",
" 0.702326 | \n",
" 0.635825 | \n",
" 0.081778 | \n",
" 0.370203 | \n",
" 0.119913 | \n",
" 0.797300 | \n",
" 0.813393 | \n",
" 0.217597 | \n",
" 0.075991 | \n",
" 0.641011 | \n",
" 0.152553 | \n",
" 0.398929 | \n",
" 0.412747 | \n",
" 0.495972 | \n",
" 0.426923 | \n",
" 0.057331 | \n",
" 0.907335 | \n",
" 0.242210 | \n",
" 0.860111 | \n",
" 0.764627 | \n",
" 0.243772 | \n",
" 0.744785 | \n",
" 0.944923 | \n",
" 0.991802 | \n",
" 0.775039 | \n",
" 0.412386 | \n",
"
\n",
" \n",
" 1 | \n",
" 0.491426 | \n",
" 0.584446 | \n",
" 0.525093 | \n",
" 0.719466 | \n",
" 0.765294 | \n",
" 0.368640 | \n",
" 0.439217 | \n",
" 0.130738 | \n",
" 0.202588 | \n",
" 0.948425 | \n",
" 0.567772 | \n",
" 0.198878 | \n",
" 0.924895 | \n",
" 0.789798 | \n",
" 0.067976 | \n",
" 0.226943 | \n",
" 0.250648 | \n",
" 0.110083 | \n",
" 0.086327 | \n",
" 0.985833 | \n",
" 0.469663 | \n",
" 0.990004 | \n",
" 0.864332 | \n",
" 0.768623 | \n",
" 0.451735 | \n",
" 0.677281 | \n",
" 0.016003 | \n",
" 0.733019 | \n",
" 0.439045 | \n",
" 0.404881 | \n",
"
\n",
" \n",
" 2 | \n",
" 0.798883 | \n",
" 0.821652 | \n",
" 0.390241 | \n",
" 0.376169 | \n",
" 0.809637 | \n",
" 0.485191 | \n",
" 0.535743 | \n",
" 0.961506 | \n",
" 0.333799 | \n",
" 0.040235 | \n",
" 0.590649 | \n",
" 0.948139 | \n",
" 0.197314 | \n",
" 0.429642 | \n",
" 0.052509 | \n",
" 0.685962 | \n",
" 0.018500 | \n",
" 0.424301 | \n",
" 0.038459 | \n",
" 0.436108 | \n",
" 0.597363 | \n",
" 0.163290 | \n",
" 0.551183 | \n",
" 0.110727 | \n",
" 0.180119 | \n",
" 0.188264 | \n",
" 0.309836 | \n",
" 0.129119 | \n",
" 0.233958 | \n",
" 0.301704 | \n",
"
\n",
" \n",
" 3 | \n",
" 0.374281 | \n",
" 0.025460 | \n",
" 0.466751 | \n",
" 0.811396 | \n",
" 0.470298 | \n",
" 0.685114 | \n",
" 0.795139 | \n",
" 0.375138 | \n",
" 0.708736 | \n",
" 0.113676 | \n",
" 0.043767 | \n",
" 0.769843 | \n",
" 0.971443 | \n",
" 0.960800 | \n",
" 0.183116 | \n",
" 0.550305 | \n",
" 0.300616 | \n",
" 0.936178 | \n",
" 0.384496 | \n",
" 0.670216 | \n",
" 0.916064 | \n",
" 0.663030 | \n",
" 0.230242 | \n",
" 0.624192 | \n",
" 0.407815 | \n",
" 0.740665 | \n",
" 0.504651 | \n",
" 0.021896 | \n",
" 0.235594 | \n",
" 0.978403 | \n",
"
\n",
" \n",
" 4 | \n",
" 0.260491 | \n",
" 0.177377 | \n",
" 0.962863 | \n",
" 0.133829 | \n",
" 0.716351 | \n",
" 0.557946 | \n",
" 0.907913 | \n",
" 0.872178 | \n",
" 0.256827 | \n",
" 0.723024 | \n",
" 0.441635 | \n",
" 0.960745 | \n",
" 0.703610 | \n",
" 0.900218 | \n",
" 0.129143 | \n",
" 0.691840 | \n",
" 0.529385 | \n",
" 0.225385 | \n",
" 0.314935 | \n",
" 0.663522 | \n",
" 0.416517 | \n",
" 0.845554 | \n",
" 0.001661 | \n",
" 0.000941 | \n",
" 0.205084 | \n",
" 0.327311 | \n",
" 0.065750 | \n",
" 0.462068 | \n",
" 0.800227 | \n",
" 0.652551 | \n",
"
\n",
" \n",
" 5 | \n",
" 0.823392 | \n",
" 0.542735 | \n",
" 0.647765 | \n",
" 0.811117 | \n",
" 0.824598 | \n",
" 0.812442 | \n",
" 0.790274 | \n",
" 0.605702 | \n",
" 0.257909 | \n",
" 0.993247 | \n",
" 0.568817 | \n",
" 0.683365 | \n",
" 0.086623 | \n",
" 0.748251 | \n",
" 0.145187 | \n",
" 0.956925 | \n",
" 0.709713 | \n",
" 0.978972 | \n",
" 0.391186 | \n",
" 0.778853 | \n",
" 0.644358 | \n",
" 0.615774 | \n",
" 0.038427 | \n",
" 0.241094 | \n",
" 0.911206 | \n",
" 0.918750 | \n",
" 0.052265 | \n",
" 0.402419 | \n",
" 0.607283 | \n",
" 0.789062 | \n",
"
\n",
" \n",
" 6 | \n",
" 0.174582 | \n",
" 0.814848 | \n",
" 0.607036 | \n",
" 0.418719 | \n",
" 0.907148 | \n",
" 0.089590 | \n",
" 0.571128 | \n",
" 0.903398 | \n",
" 0.922132 | \n",
" 0.058366 | \n",
" 0.290822 | \n",
" 0.726943 | \n",
" 0.465682 | \n",
" 0.629000 | \n",
" 0.333665 | \n",
" 0.270113 | \n",
" 0.515332 | \n",
" 0.977382 | \n",
" 0.611564 | \n",
" 0.913686 | \n",
" 0.296590 | \n",
" 0.209712 | \n",
" 0.834807 | \n",
" 0.673749 | \n",
" 0.387952 | \n",
" 0.185758 | \n",
" 0.149772 | \n",
" 0.865447 | \n",
" 0.864838 | \n",
" 0.734848 | \n",
"
\n",
" \n",
" 7 | \n",
" 0.546791 | \n",
" 0.707528 | \n",
" 0.979713 | \n",
" 0.107482 | \n",
" 0.593430 | \n",
" 0.528918 | \n",
" 0.590753 | \n",
" 0.198078 | \n",
" 0.626747 | \n",
" 0.262134 | \n",
" 0.955515 | \n",
" 0.983084 | \n",
" 0.069840 | \n",
" 0.654970 | \n",
" 0.257981 | \n",
" 0.936330 | \n",
" 0.294464 | \n",
" 0.037339 | \n",
" 0.527534 | \n",
" 0.702398 | \n",
" 0.119693 | \n",
" 0.466901 | \n",
" 0.070817 | \n",
" 0.526581 | \n",
" 0.108649 | \n",
" 0.444628 | \n",
" 0.918643 | \n",
" 0.218161 | \n",
" 0.628602 | \n",
" 0.562219 | \n",
"
\n",
" \n",
" 8 | \n",
" 0.152891 | \n",
" 0.870828 | \n",
" 0.052070 | \n",
" 0.943543 | \n",
" 0.203708 | \n",
" 0.019166 | \n",
" 0.716120 | \n",
" 0.539609 | \n",
" 0.108131 | \n",
" 0.339062 | \n",
" 0.625137 | \n",
" 0.645738 | \n",
" 0.468916 | \n",
" 0.060478 | \n",
" 0.562937 | \n",
" 0.133318 | \n",
" 0.167932 | \n",
" 0.508497 | \n",
" 0.180976 | \n",
" 0.754520 | \n",
" 0.761375 | \n",
" 0.060383 | \n",
" 0.781094 | \n",
" 0.384702 | \n",
" 0.367787 | \n",
" 0.543003 | \n",
" 0.618757 | \n",
" 0.459120 | \n",
" 0.752381 | \n",
" 0.280349 | \n",
"
\n",
" \n",
" 9 | \n",
" 0.622080 | \n",
" 0.270636 | \n",
" 0.906498 | \n",
" 0.023314 | \n",
" 0.676899 | \n",
" 0.611577 | \n",
" 0.568219 | \n",
" 0.305085 | \n",
" 0.816239 | \n",
" 0.934662 | \n",
" 0.216122 | \n",
" 0.823190 | \n",
" 0.611720 | \n",
" 0.653541 | \n",
" 0.423822 | \n",
" 0.887000 | \n",
" 0.039315 | \n",
" 0.677546 | \n",
" 0.431833 | \n",
" 0.409528 | \n",
" 0.884798 | \n",
" 0.728613 | \n",
" 0.370678 | \n",
" 0.977302 | \n",
" 0.581606 | \n",
" 0.125268 | \n",
" 0.196706 | \n",
" 0.388035 | \n",
" 0.942682 | \n",
" 0.059056 | \n",
"
\n",
" \n",
" 10 | \n",
" 0.846489 | \n",
" 0.269708 | \n",
" 0.970902 | \n",
" 0.671915 | \n",
" 0.992466 | \n",
" 0.250554 | \n",
" 0.607763 | \n",
" 0.724424 | \n",
" 0.315379 | \n",
" 0.634437 | \n",
" 0.915385 | \n",
" 0.469705 | \n",
" 0.280737 | \n",
" 0.052987 | \n",
" 0.457430 | \n",
" 0.169607 | \n",
" 0.321497 | \n",
" 0.652358 | \n",
" 0.300634 | \n",
" 0.903797 | \n",
" 0.515073 | \n",
" 0.028171 | \n",
" 0.425426 | \n",
" 0.603490 | \n",
" 0.716513 | \n",
" 0.123498 | \n",
" 0.222629 | \n",
" 0.910237 | \n",
" 0.086722 | \n",
" 0.716075 | \n",
"
\n",
" \n",
" 11 | \n",
" 0.069933 | \n",
" 0.128561 | \n",
" 0.787535 | \n",
" 0.365745 | \n",
" 0.779097 | \n",
" 0.920280 | \n",
" 0.246573 | \n",
" 0.235344 | \n",
" 0.660998 | \n",
" 0.514938 | \n",
" 0.973601 | \n",
" 0.131641 | \n",
" 0.372902 | \n",
" 0.242042 | \n",
" 0.620540 | \n",
" 0.347847 | \n",
" 0.079931 | \n",
" 0.212704 | \n",
" 0.538853 | \n",
" 0.432121 | \n",
" 0.069997 | \n",
" 0.866002 | \n",
" 0.541957 | \n",
" 0.327762 | \n",
" 0.050988 | \n",
" 0.585496 | \n",
" 0.310973 | \n",
" 0.004999 | \n",
" 0.820443 | \n",
" 0.345355 | \n",
"
\n",
" \n",
" 12 | \n",
" 0.062334 | \n",
" 0.923280 | \n",
" 0.003589 | \n",
" 0.478470 | \n",
" 0.528231 | \n",
" 0.195763 | \n",
" 0.226064 | \n",
" 0.268828 | \n",
" 0.316619 | \n",
" 0.269507 | \n",
" 0.763287 | \n",
" 0.632114 | \n",
" 0.750555 | \n",
" 0.299116 | \n",
" 0.748178 | \n",
" 0.319981 | \n",
" 0.581872 | \n",
" 0.239044 | \n",
" 0.094453 | \n",
" 0.584066 | \n",
" 0.210230 | \n",
" 0.043657 | \n",
" 0.724076 | \n",
" 0.428575 | \n",
" 0.180019 | \n",
" 0.877576 | \n",
" 0.083257 | \n",
" 0.458346 | \n",
" 0.053451 | \n",
" 0.315931 | \n",
"
\n",
" \n",
" 13 | \n",
" 0.443019 | \n",
" 0.289886 | \n",
" 0.788840 | \n",
" 0.701972 | \n",
" 0.952204 | \n",
" 0.328908 | \n",
" 0.009426 | \n",
" 0.678261 | \n",
" 0.631814 | \n",
" 0.304550 | \n",
" 0.515021 | \n",
" 0.081605 | \n",
" 0.293476 | \n",
" 0.086111 | \n",
" 0.211582 | \n",
" 0.804969 | \n",
" 0.404649 | \n",
" 0.643264 | \n",
" 0.916444 | \n",
" 0.228347 | \n",
" 0.446108 | \n",
" 0.381073 | \n",
" 0.761629 | \n",
" 0.722589 | \n",
" 0.741040 | \n",
" 0.835229 | \n",
" 0.258541 | \n",
" 0.287785 | \n",
" 0.146448 | \n",
" 0.003330 | \n",
"
\n",
" \n",
" 14 | \n",
" 0.808068 | \n",
" 0.018873 | \n",
" 0.154060 | \n",
" 0.193737 | \n",
" 0.091614 | \n",
" 0.032728 | \n",
" 0.808892 | \n",
" 0.336193 | \n",
" 0.573263 | \n",
" 0.538365 | \n",
" 0.594855 | \n",
" 0.433657 | \n",
" 0.334472 | \n",
" 0.057797 | \n",
" 0.948607 | \n",
" 0.967295 | \n",
" 0.151642 | \n",
" 0.350897 | \n",
" 0.951102 | \n",
" 0.960497 | \n",
" 0.080081 | \n",
" 0.098757 | \n",
" 0.185077 | \n",
" 0.511918 | \n",
" 0.237707 | \n",
" 0.142528 | \n",
" 0.891438 | \n",
" 0.806999 | \n",
" 0.323360 | \n",
" 0.913913 | \n",
"
\n",
" \n",
" 15 | \n",
" 0.503116 | \n",
" 0.277635 | \n",
" 0.065355 | \n",
" 0.563814 | \n",
" 0.189082 | \n",
" 0.420835 | \n",
" 0.522877 | \n",
" 0.858607 | \n",
" 0.555633 | \n",
" 0.680493 | \n",
" 0.233000 | \n",
" 0.518150 | \n",
" 0.328573 | \n",
" 0.489802 | \n",
" 0.726806 | \n",
" 0.005590 | \n",
" 0.737815 | \n",
" 0.591044 | \n",
" 0.276552 | \n",
" 0.876043 | \n",
" 0.899343 | \n",
" 0.489191 | \n",
" 0.008964 | \n",
" 0.488479 | \n",
" 0.807909 | \n",
" 0.878133 | \n",
" 0.257454 | \n",
" 0.574865 | \n",
" 0.336875 | \n",
" 0.647768 | \n",
"
\n",
" \n",
" 16 | \n",
" 0.743084 | \n",
" 0.379264 | \n",
" 0.584380 | \n",
" 0.737356 | \n",
" 0.460058 | \n",
" 0.863427 | \n",
" 0.487050 | \n",
" 0.693626 | \n",
" 0.111514 | \n",
" 0.001077 | \n",
" 0.605950 | \n",
" 0.866133 | \n",
" 0.924439 | \n",
" 0.016670 | \n",
" 0.038890 | \n",
" 0.330194 | \n",
" 0.905049 | \n",
" 0.053323 | \n",
" 0.379276 | \n",
" 0.477070 | \n",
" 0.885285 | \n",
" 0.294306 | \n",
" 0.728870 | \n",
" 0.036288 | \n",
" 0.117258 | \n",
" 0.162836 | \n",
" 0.096697 | \n",
" 0.697209 | \n",
" 0.354697 | \n",
" 0.083038 | \n",
"
\n",
" \n",
" 17 | \n",
" 0.057854 | \n",
" 0.474164 | \n",
" 0.382057 | \n",
" 0.987858 | \n",
" 0.870524 | \n",
" 0.486325 | \n",
" 0.039846 | \n",
" 0.653020 | \n",
" 0.573196 | \n",
" 0.912633 | \n",
" 0.559741 | \n",
" 0.047761 | \n",
" 0.270766 | \n",
" 0.625991 | \n",
" 0.764665 | \n",
" 0.988811 | \n",
" 0.870873 | \n",
" 0.817841 | \n",
" 0.266430 | \n",
" 0.901922 | \n",
" 0.272297 | \n",
" 0.342966 | \n",
" 0.630057 | \n",
" 0.116416 | \n",
" 0.927370 | \n",
" 0.891600 | \n",
" 0.123707 | \n",
" 0.087093 | \n",
" 0.574580 | \n",
" 0.721992 | \n",
"
\n",
" \n",
" 18 | \n",
" 0.431281 | \n",
" 0.863277 | \n",
" 0.537359 | \n",
" 0.031353 | \n",
" 0.645197 | \n",
" 0.595668 | \n",
" 0.209443 | \n",
" 0.709357 | \n",
" 0.497487 | \n",
" 0.349076 | \n",
" 0.281547 | \n",
" 0.989705 | \n",
" 0.284879 | \n",
" 0.674823 | \n",
" 0.661377 | \n",
" 0.626745 | \n",
" 0.342837 | \n",
" 0.174544 | \n",
" 0.699321 | \n",
" 0.737172 | \n",
" 0.531518 | \n",
" 0.309345 | \n",
" 0.382286 | \n",
" 0.259682 | \n",
" 0.162219 | \n",
" 0.137275 | \n",
" 0.122808 | \n",
" 0.194412 | \n",
" 0.087458 | \n",
" 0.385799 | \n",
"
\n",
" \n",
" 19 | \n",
" 0.944137 | \n",
" 0.484956 | \n",
" 0.694314 | \n",
" 0.596388 | \n",
" 0.496805 | \n",
" 0.066082 | \n",
" 0.347798 | \n",
" 0.128290 | \n",
" 0.900064 | \n",
" 0.889617 | \n",
" 0.928961 | \n",
" 0.314974 | \n",
" 0.187434 | \n",
" 0.349362 | \n",
" 0.625388 | \n",
" 0.224359 | \n",
" 0.828881 | \n",
" 0.365829 | \n",
" 0.371148 | \n",
" 0.535126 | \n",
" 0.696872 | \n",
" 0.307474 | \n",
" 0.360111 | \n",
" 0.777404 | \n",
" 0.527858 | \n",
" 0.658311 | \n",
" 0.874442 | \n",
" 0.317369 | \n",
" 0.936701 | \n",
" 0.993278 | \n",
"
\n",
" \n",
" 20 | \n",
" 0.368692 | \n",
" 0.846403 | \n",
" 0.106816 | \n",
" 0.074808 | \n",
" 0.419144 | \n",
" 0.921883 | \n",
" 0.734816 | \n",
" 0.678468 | \n",
" 0.161162 | \n",
" 0.781723 | \n",
" 0.197679 | \n",
" 0.366691 | \n",
" 0.696398 | \n",
" 0.595407 | \n",
" 0.228014 | \n",
" 0.659368 | \n",
" 0.070010 | \n",
" 0.199005 | \n",
" 0.495725 | \n",
" 0.475817 | \n",
" 0.752258 | \n",
" 0.113858 | \n",
" 0.779835 | \n",
" 0.790192 | \n",
" 0.248075 | \n",
" 0.967884 | \n",
" 0.393130 | \n",
" 0.473883 | \n",
" 0.672919 | \n",
" 0.256158 | \n",
"
\n",
" \n",
" 21 | \n",
" 0.214098 | \n",
" 0.087049 | \n",
" 0.851842 | \n",
" 0.253189 | \n",
" 0.380128 | \n",
" 0.845002 | \n",
" 0.330860 | \n",
" 0.283467 | \n",
" 0.664088 | \n",
" 0.103456 | \n",
" 0.398925 | \n",
" 0.498581 | \n",
" 0.673513 | \n",
" 0.992755 | \n",
" 0.897678 | \n",
" 0.076425 | \n",
" 0.277140 | \n",
" 0.804702 | \n",
" 0.623825 | \n",
" 0.325423 | \n",
" 0.003088 | \n",
" 0.473770 | \n",
" 0.380403 | \n",
" 0.539762 | \n",
" 0.264476 | \n",
" 0.650952 | \n",
" 0.718906 | \n",
" 0.097410 | \n",
" 0.047993 | \n",
" 0.879046 | \n",
"
\n",
" \n",
" 22 | \n",
" 0.020078 | \n",
" 0.568570 | \n",
" 0.067835 | \n",
" 0.575939 | \n",
" 0.421478 | \n",
" 0.946298 | \n",
" 0.949849 | \n",
" 0.379918 | \n",
" 0.503542 | \n",
" 0.829583 | \n",
" 0.030764 | \n",
" 0.795298 | \n",
" 0.213898 | \n",
" 0.200304 | \n",
" 0.351145 | \n",
" 0.900516 | \n",
" 0.189523 | \n",
" 0.664209 | \n",
" 0.129083 | \n",
" 0.935204 | \n",
" 0.947282 | \n",
" 0.891038 | \n",
" 0.770340 | \n",
" 0.179773 | \n",
" 0.104121 | \n",
" 0.741933 | \n",
" 0.025690 | \n",
" 0.477218 | \n",
" 0.080934 | \n",
" 0.912208 | \n",
"
\n",
" \n",
" 23 | \n",
" 0.601433 | \n",
" 0.284835 | \n",
" 0.667852 | \n",
" 0.149745 | \n",
" 0.001736 | \n",
" 0.246749 | \n",
" 0.994182 | \n",
" 0.574476 | \n",
" 0.958963 | \n",
" 0.282599 | \n",
" 0.119573 | \n",
" 0.394154 | \n",
" 0.475698 | \n",
" 0.096617 | \n",
" 0.750427 | \n",
" 0.314251 | \n",
" 0.918600 | \n",
" 0.244872 | \n",
" 0.887766 | \n",
" 0.844412 | \n",
" 0.496408 | \n",
" 0.576494 | \n",
" 0.445171 | \n",
" 0.758714 | \n",
" 0.944654 | \n",
" 0.532030 | \n",
" 0.137241 | \n",
" 0.087748 | \n",
" 0.372629 | \n",
" 0.617857 | \n",
"
\n",
" \n",
" 24 | \n",
" 0.467258 | \n",
" 0.709365 | \n",
" 0.123957 | \n",
" 0.945570 | \n",
" 0.834850 | \n",
" 0.975976 | \n",
" 0.647120 | \n",
" 0.279584 | \n",
" 0.534938 | \n",
" 0.640714 | \n",
" 0.863160 | \n",
" 0.414332 | \n",
" 0.914883 | \n",
" 0.905426 | \n",
" 0.669827 | \n",
" 0.740110 | \n",
" 0.046268 | \n",
" 0.257567 | \n",
" 0.412065 | \n",
" 0.971992 | \n",
" 0.059296 | \n",
" 0.474689 | \n",
" 0.667531 | \n",
" 0.616685 | \n",
" 0.424421 | \n",
" 0.184510 | \n",
" 0.404427 | \n",
" 0.126029 | \n",
" 0.981709 | \n",
" 0.962642 | \n",
"
\n",
" \n",
" 25 | \n",
" 0.715992 | \n",
" 0.508447 | \n",
" 0.486200 | \n",
" 0.517512 | \n",
" 0.322349 | \n",
" 0.150000 | \n",
" 0.595325 | \n",
" 0.466549 | \n",
" 0.681784 | \n",
" 0.510865 | \n",
" 0.341896 | \n",
" 0.642011 | \n",
" 0.194003 | \n",
" 0.176136 | \n",
" 0.678555 | \n",
" 0.895494 | \n",
" 0.693578 | \n",
" 0.269054 | \n",
" 0.002012 | \n",
" 0.768728 | \n",
" 0.678023 | \n",
" 0.463972 | \n",
" 0.534715 | \n",
" 0.720319 | \n",
" 0.918027 | \n",
" 0.405074 | \n",
" 0.052709 | \n",
" 0.751659 | \n",
" 0.790349 | \n",
" 0.240731 | \n",
"
\n",
" \n",
" 26 | \n",
" 0.962200 | \n",
" 0.523942 | \n",
" 0.083645 | \n",
" 0.901434 | \n",
" 0.306039 | \n",
" 0.596029 | \n",
" 0.737512 | \n",
" 0.213862 | \n",
" 0.160708 | \n",
" 0.771491 | \n",
" 0.403530 | \n",
" 0.728881 | \n",
" 0.885451 | \n",
" 0.334911 | \n",
" 0.957275 | \n",
" 0.406542 | \n",
" 0.104049 | \n",
" 0.846459 | \n",
" 0.121404 | \n",
" 0.678292 | \n",
" 0.253461 | \n",
" 0.751406 | \n",
" 0.164445 | \n",
" 0.470135 | \n",
" 0.754815 | \n",
" 0.811779 | \n",
" 0.244966 | \n",
" 0.035292 | \n",
" 0.059534 | \n",
" 0.939546 | \n",
"
\n",
" \n",
" 27 | \n",
" 0.568461 | \n",
" 0.443897 | \n",
" 0.211743 | \n",
" 0.459422 | \n",
" 0.358308 | \n",
" 0.643205 | \n",
" 0.647745 | \n",
" 0.245107 | \n",
" 0.089982 | \n",
" 0.924144 | \n",
" 0.352291 | \n",
" 0.400914 | \n",
" 0.601927 | \n",
" 0.475980 | \n",
" 0.583649 | \n",
" 0.538165 | \n",
" 0.693437 | \n",
" 0.562741 | \n",
" 0.957271 | \n",
" 0.017563 | \n",
" 0.509851 | \n",
" 0.971199 | \n",
" 0.313072 | \n",
" 0.870392 | \n",
" 0.409245 | \n",
" 0.166389 | \n",
" 0.470059 | \n",
" 0.333368 | \n",
" 0.827256 | \n",
" 0.856752 | \n",
"
\n",
" \n",
" 28 | \n",
" 0.935524 | \n",
" 0.204926 | \n",
" 0.295505 | \n",
" 0.753311 | \n",
" 0.285446 | \n",
" 0.020390 | \n",
" 0.179562 | \n",
" 0.049065 | \n",
" 0.507503 | \n",
" 0.091044 | \n",
" 0.333323 | \n",
" 0.675467 | \n",
" 0.102059 | \n",
" 0.041811 | \n",
" 0.391393 | \n",
" 0.194722 | \n",
" 0.513964 | \n",
" 0.454184 | \n",
" 0.607115 | \n",
" 0.154261 | \n",
" 0.421348 | \n",
" 0.916496 | \n",
" 0.613131 | \n",
" 0.600833 | \n",
" 0.029396 | \n",
" 0.149743 | \n",
" 0.751259 | \n",
" 0.351360 | \n",
" 0.417076 | \n",
" 0.902869 | \n",
"
\n",
" \n",
" 29 | \n",
" 0.717175 | \n",
" 0.026909 | \n",
" 0.229667 | \n",
" 0.772001 | \n",
" 0.186979 | \n",
" 0.430898 | \n",
" 0.122885 | \n",
" 0.772687 | \n",
" 0.540777 | \n",
" 0.708760 | \n",
" 0.661636 | \n",
" 0.593298 | \n",
" 0.212051 | \n",
" 0.423400 | \n",
" 0.836189 | \n",
" 0.208818 | \n",
" 0.123221 | \n",
" 0.589420 | \n",
" 0.740686 | \n",
" 0.388635 | \n",
" 0.771973 | \n",
" 0.001448 | \n",
" 0.759421 | \n",
" 0.889395 | \n",
" 0.714099 | \n",
" 0.609490 | \n",
" 0.195200 | \n",
" 0.239485 | \n",
" 0.604957 | \n",
" 0.709172 | \n",
"
\n",
" \n",
" 30 | \n",
" 0.599074 | \n",
" 0.581976 | \n",
" 0.565395 | \n",
" 0.940781 | \n",
" 0.056225 | \n",
" 0.932920 | \n",
" 0.241515 | \n",
" 0.588169 | \n",
" 0.346667 | \n",
" 0.610860 | \n",
" 0.801080 | \n",
" 0.952361 | \n",
" 0.502563 | \n",
" 0.928013 | \n",
" 0.235149 | \n",
" 0.909307 | \n",
" 0.110822 | \n",
" 0.191069 | \n",
" 0.648090 | \n",
" 0.193660 | \n",
" 0.614083 | \n",
" 0.692971 | \n",
" 0.239337 | \n",
" 0.502809 | \n",
" 0.906174 | \n",
" 0.844201 | \n",
" 0.501841 | \n",
" 0.109495 | \n",
" 0.861290 | \n",
" 0.055246 | \n",
"
\n",
" \n",
" 31 | \n",
" 0.837664 | \n",
" 0.813386 | \n",
" 0.141612 | \n",
" 0.759889 | \n",
" 0.926093 | \n",
" 0.974489 | \n",
" 0.143851 | \n",
" 0.584297 | \n",
" 0.545308 | \n",
" 0.345272 | \n",
" 0.135385 | \n",
" 0.382212 | \n",
" 0.352726 | \n",
" 0.100584 | \n",
" 0.411745 | \n",
" 0.321778 | \n",
" 0.841084 | \n",
" 0.177530 | \n",
" 0.566323 | \n",
" 0.690729 | \n",
" 0.690565 | \n",
" 0.988513 | \n",
" 0.948981 | \n",
" 0.681599 | \n",
" 0.664379 | \n",
" 0.409103 | \n",
" 0.494528 | \n",
" 0.319356 | \n",
" 0.328964 | \n",
" 0.072510 | \n",
"
\n",
" \n",
" 32 | \n",
" 0.554758 | \n",
" 0.419451 | \n",
" 0.543710 | \n",
" 0.544109 | \n",
" 0.658208 | \n",
" 0.330085 | \n",
" 0.013048 | \n",
" 0.644429 | \n",
" 0.923094 | \n",
" 0.077120 | \n",
" 0.918075 | \n",
" 0.973780 | \n",
" 0.365385 | \n",
" 0.428036 | \n",
" 0.876110 | \n",
" 0.446492 | \n",
" 0.452866 | \n",
" 0.604891 | \n",
" 0.379622 | \n",
" 0.881405 | \n",
" 0.106689 | \n",
" 0.897957 | \n",
" 0.335940 | \n",
" 0.456464 | \n",
" 0.773685 | \n",
" 0.863320 | \n",
" 0.278794 | \n",
" 0.621384 | \n",
" 0.132359 | \n",
" 0.765531 | \n",
"
\n",
" \n",
" 33 | \n",
" 0.328671 | \n",
" 0.616572 | \n",
" 0.202418 | \n",
" 0.751640 | \n",
" 0.135147 | \n",
" 0.828703 | \n",
" 0.247479 | \n",
" 0.963246 | \n",
" 0.027938 | \n",
" 0.910738 | \n",
" 0.425265 | \n",
" 0.953610 | \n",
" 0.737054 | \n",
" 0.162719 | \n",
" 0.109166 | \n",
" 0.203975 | \n",
" 0.491198 | \n",
" 0.494556 | \n",
" 0.294155 | \n",
" 0.093356 | \n",
" 0.886009 | \n",
" 0.613690 | \n",
" 0.382977 | \n",
" 0.804052 | \n",
" 0.913710 | \n",
" 0.316802 | \n",
" 0.817641 | \n",
" 0.047581 | \n",
" 0.132360 | \n",
" 0.941529 | \n",
"
\n",
" \n",
" 34 | \n",
" 0.430054 | \n",
" 0.682827 | \n",
" 0.306024 | \n",
" 0.287219 | \n",
" 0.254885 | \n",
" 0.535979 | \n",
" 0.290770 | \n",
" 0.572601 | \n",
" 0.195610 | \n",
" 0.007694 | \n",
" 0.692215 | \n",
" 0.054614 | \n",
" 0.248207 | \n",
" 0.875781 | \n",
" 0.662057 | \n",
" 0.570455 | \n",
" 0.914122 | \n",
" 0.748697 | \n",
" 0.371530 | \n",
" 0.799924 | \n",
" 0.136684 | \n",
" 0.384212 | \n",
" 0.987660 | \n",
" 0.260141 | \n",
" 0.253554 | \n",
" 0.134256 | \n",
" 0.403624 | \n",
" 0.772729 | \n",
" 0.751016 | \n",
" 0.953293 | \n",
"
\n",
" \n",
" 35 | \n",
" 0.068935 | \n",
" 0.953351 | \n",
" 0.100823 | \n",
" 0.103434 | \n",
" 0.625374 | \n",
" 0.571393 | \n",
" 0.682740 | \n",
" 0.351674 | \n",
" 0.198406 | \n",
" 0.091559 | \n",
" 0.261832 | \n",
" 0.690165 | \n",
" 0.056777 | \n",
" 0.738249 | \n",
" 0.860423 | \n",
" 0.637600 | \n",
" 0.814031 | \n",
" 0.377364 | \n",
" 0.090392 | \n",
" 0.924764 | \n",
" 0.255793 | \n",
" 0.789511 | \n",
" 0.296198 | \n",
" 0.330190 | \n",
" 0.921916 | \n",
" 0.137425 | \n",
" 0.097964 | \n",
" 0.976958 | \n",
" 0.140189 | \n",
" 0.181310 | \n",
"
\n",
" \n",
" 36 | \n",
" 0.959074 | \n",
" 0.897419 | \n",
" 0.761285 | \n",
" 0.992035 | \n",
" 0.692415 | \n",
" 0.266561 | \n",
" 0.040356 | \n",
" 0.807738 | \n",
" 0.572842 | \n",
" 0.879641 | \n",
" 0.544679 | \n",
" 0.513676 | \n",
" 0.956565 | \n",
" 0.397484 | \n",
" 0.592211 | \n",
" 0.570091 | \n",
" 0.420031 | \n",
" 0.044040 | \n",
" 0.511031 | \n",
" 0.357037 | \n",
" 0.251677 | \n",
" 0.566612 | \n",
" 0.226526 | \n",
" 0.658419 | \n",
" 0.423045 | \n",
" 0.871050 | \n",
" 0.094107 | \n",
" 0.101532 | \n",
" 0.567580 | \n",
" 0.283756 | \n",
"
\n",
" \n",
" 37 | \n",
" 0.597130 | \n",
" 0.624148 | \n",
" 0.558344 | \n",
" 0.747776 | \n",
" 0.065016 | \n",
" 0.310713 | \n",
" 0.534334 | \n",
" 0.189690 | \n",
" 0.019022 | \n",
" 0.918994 | \n",
" 0.233356 | \n",
" 0.840770 | \n",
" 0.820874 | \n",
" 0.359727 | \n",
" 0.204347 | \n",
" 0.354155 | \n",
" 0.910890 | \n",
" 0.107344 | \n",
" 0.078744 | \n",
" 0.390031 | \n",
" 0.862202 | \n",
" 0.934260 | \n",
" 0.686790 | \n",
" 0.557980 | \n",
" 0.427497 | \n",
" 0.015030 | \n",
" 0.389670 | \n",
" 0.807917 | \n",
" 0.634687 | \n",
" 0.631037 | \n",
"
\n",
" \n",
" 38 | \n",
" 0.517367 | \n",
" 0.962952 | \n",
" 0.162887 | \n",
" 0.259869 | \n",
" 0.163447 | \n",
" 0.241599 | \n",
" 0.214475 | \n",
" 0.783970 | \n",
" 0.485379 | \n",
" 0.057690 | \n",
" 0.711698 | \n",
" 0.512955 | \n",
" 0.303263 | \n",
" 0.341097 | \n",
" 0.651795 | \n",
" 0.079569 | \n",
" 0.529197 | \n",
" 0.683429 | \n",
" 0.826175 | \n",
" 0.238200 | \n",
" 0.808394 | \n",
" 0.530980 | \n",
" 0.513132 | \n",
" 0.337517 | \n",
" 0.510115 | \n",
" 0.309539 | \n",
" 0.031413 | \n",
" 0.248283 | \n",
" 0.142824 | \n",
" 0.487245 | \n",
"
\n",
" \n",
" 39 | \n",
" 0.624232 | \n",
" 0.424716 | \n",
" 0.494462 | \n",
" 0.600225 | \n",
" 0.159855 | \n",
" 0.220448 | \n",
" 0.266620 | \n",
" 0.711248 | \n",
" 0.551588 | \n",
" 0.555332 | \n",
" 0.389574 | \n",
" 0.035762 | \n",
" 0.748139 | \n",
" 0.111814 | \n",
" 0.286402 | \n",
" 0.282645 | \n",
" 0.042980 | \n",
" 0.109347 | \n",
" 0.863596 | \n",
" 0.746091 | \n",
" 0.205647 | \n",
" 0.365282 | \n",
" 0.082429 | \n",
" 0.274524 | \n",
" 0.661511 | \n",
" 0.193382 | \n",
" 0.771945 | \n",
" 0.005463 | \n",
" 0.984529 | \n",
" 0.976142 | \n",
"
\n",
" \n",
" 40 | \n",
" 0.243242 | \n",
" 0.372209 | \n",
" 0.113441 | \n",
" 0.693134 | \n",
" 0.920667 | \n",
" 0.978526 | \n",
" 0.956137 | \n",
" 0.073748 | \n",
" 0.947695 | \n",
" 0.054574 | \n",
" 0.683155 | \n",
" 0.166160 | \n",
" 0.695241 | \n",
" 0.642180 | \n",
" 0.618130 | \n",
" 0.306592 | \n",
" 0.098641 | \n",
" 0.648512 | \n",
" 0.418518 | \n",
" 0.220290 | \n",
" 0.464926 | \n",
" 0.048291 | \n",
" 0.408438 | \n",
" 0.145209 | \n",
" 0.583449 | \n",
" 0.916306 | \n",
" 0.906106 | \n",
" 0.275851 | \n",
" 0.002957 | \n",
" 0.525038 | \n",
"
\n",
" \n",
" 41 | \n",
" 0.586945 | \n",
" 0.213374 | \n",
" 0.952542 | \n",
" 0.655127 | \n",
" 0.059051 | \n",
" 0.444055 | \n",
" 0.900916 | \n",
" 0.255090 | \n",
" 0.607603 | \n",
" 0.718444 | \n",
" 0.176303 | \n",
" 0.759999 | \n",
" 0.065631 | \n",
" 0.986448 | \n",
" 0.928723 | \n",
" 0.325276 | \n",
" 0.039831 | \n",
" 0.452483 | \n",
" 0.270144 | \n",
" 0.142076 | \n",
" 0.691465 | \n",
" 0.900770 | \n",
" 0.312392 | \n",
" 0.866208 | \n",
" 0.485988 | \n",
" 0.957880 | \n",
" 0.074566 | \n",
" 0.535153 | \n",
" 0.421275 | \n",
" 0.273299 | \n",
"
\n",
" \n",
" 42 | \n",
" 0.420571 | \n",
" 0.140119 | \n",
" 0.119936 | \n",
" 0.739582 | \n",
" 0.997331 | \n",
" 0.103235 | \n",
" 0.337897 | \n",
" 0.928101 | \n",
" 0.207018 | \n",
" 0.595981 | \n",
" 0.364307 | \n",
" 0.820500 | \n",
" 0.175522 | \n",
" 0.466659 | \n",
" 0.137356 | \n",
" 0.853624 | \n",
" 0.075736 | \n",
" 0.647529 | \n",
" 0.223741 | \n",
" 0.683086 | \n",
" 0.627155 | \n",
" 0.920480 | \n",
" 0.390963 | \n",
" 0.918174 | \n",
" 0.957856 | \n",
" 0.957133 | \n",
" 0.549880 | \n",
" 0.165199 | \n",
" 0.593712 | \n",
" 0.517212 | \n",
"
\n",
" \n",
" 43 | \n",
" 0.509166 | \n",
" 0.698070 | \n",
" 0.315861 | \n",
" 0.805002 | \n",
" 0.575027 | \n",
" 0.751401 | \n",
" 0.338767 | \n",
" 0.394329 | \n",
" 0.130693 | \n",
" 0.808118 | \n",
" 0.036354 | \n",
" 0.214976 | \n",
" 0.762949 | \n",
" 0.170085 | \n",
" 0.017075 | \n",
" 0.859210 | \n",
" 0.130977 | \n",
" 0.701242 | \n",
" 0.586054 | \n",
" 0.946480 | \n",
" 0.734424 | \n",
" 0.087070 | \n",
" 0.916793 | \n",
" 0.603983 | \n",
" 0.806833 | \n",
" 0.866316 | \n",
" 0.550282 | \n",
" 0.791297 | \n",
" 0.272787 | \n",
" 0.461349 | \n",
"
\n",
" \n",
" 44 | \n",
" 0.282974 | \n",
" 0.774160 | \n",
" 0.498251 | \n",
" 0.570695 | \n",
" 0.714948 | \n",
" 0.142679 | \n",
" 0.583410 | \n",
" 0.613272 | \n",
" 0.271541 | \n",
" 0.996745 | \n",
" 0.301616 | \n",
" 0.913021 | \n",
" 0.296811 | \n",
" 0.139409 | \n",
" 0.593337 | \n",
" 0.284343 | \n",
" 0.488794 | \n",
" 0.453034 | \n",
" 0.561590 | \n",
" 0.488589 | \n",
" 0.526806 | \n",
" 0.356344 | \n",
" 0.633075 | \n",
" 0.376531 | \n",
" 0.104057 | \n",
" 0.547391 | \n",
" 0.681421 | \n",
" 0.600035 | \n",
" 0.244555 | \n",
" 0.876272 | \n",
"
\n",
" \n",
" 45 | \n",
" 0.705720 | \n",
" 0.961751 | \n",
" 0.380580 | \n",
" 0.854292 | \n",
" 0.016862 | \n",
" 0.221851 | \n",
" 0.043705 | \n",
" 0.766565 | \n",
" 0.121875 | \n",
" 0.183591 | \n",
" 0.492443 | \n",
" 0.245181 | \n",
" 0.695867 | \n",
" 0.412479 | \n",
" 0.763473 | \n",
" 0.364036 | \n",
" 0.933494 | \n",
" 0.988541 | \n",
" 0.852133 | \n",
" 0.781288 | \n",
" 0.072685 | \n",
" 0.356654 | \n",
" 0.571731 | \n",
" 0.685233 | \n",
" 0.282982 | \n",
" 0.520551 | \n",
" 0.612957 | \n",
" 0.234516 | \n",
" 0.860184 | \n",
" 0.896478 | \n",
"
\n",
" \n",
" 46 | \n",
" 0.340938 | \n",
" 0.914339 | \n",
" 0.084733 | \n",
" 0.053865 | \n",
" 0.410685 | \n",
" 0.010644 | \n",
" 0.008610 | \n",
" 0.304427 | \n",
" 0.990845 | \n",
" 0.323871 | \n",
" 0.045816 | \n",
" 0.280553 | \n",
" 0.811784 | \n",
" 0.920272 | \n",
" 0.261799 | \n",
" 0.676882 | \n",
" 0.180754 | \n",
" 0.940633 | \n",
" 0.436200 | \n",
" 0.389245 | \n",
" 0.484100 | \n",
" 0.373068 | \n",
" 0.034519 | \n",
" 0.635554 | \n",
" 0.222746 | \n",
" 0.628988 | \n",
" 0.065618 | \n",
" 0.833896 | \n",
" 0.662683 | \n",
" 0.816639 | \n",
"
\n",
" \n",
" 47 | \n",
" 0.046532 | \n",
" 0.514511 | \n",
" 0.990109 | \n",
" 0.494894 | \n",
" 0.162298 | \n",
" 0.500364 | \n",
" 0.542282 | \n",
" 0.360552 | \n",
" 0.536921 | \n",
" 0.003268 | \n",
" 0.418236 | \n",
" 0.236739 | \n",
" 0.189870 | \n",
" 0.797396 | \n",
" 0.830240 | \n",
" 0.768234 | \n",
" 0.333011 | \n",
" 0.708766 | \n",
" 0.305381 | \n",
" 0.089423 | \n",
" 0.308147 | \n",
" 0.862552 | \n",
" 0.735222 | \n",
" 0.931428 | \n",
" 0.622175 | \n",
" 0.100053 | \n",
" 0.604539 | \n",
" 0.780060 | \n",
" 0.962411 | \n",
" 0.588523 | \n",
"
\n",
" \n",
" 48 | \n",
" 0.989376 | \n",
" 0.123802 | \n",
" 0.480965 | \n",
" 0.063789 | \n",
" 0.029674 | \n",
" 0.028277 | \n",
" 0.042733 | \n",
" 0.626647 | \n",
" 0.835509 | \n",
" 0.579123 | \n",
" 0.860774 | \n",
" 0.576712 | \n",
" 0.595198 | \n",
" 0.686706 | \n",
" 0.766777 | \n",
" 0.677700 | \n",
" 0.602408 | \n",
" 0.539586 | \n",
" 0.371917 | \n",
" 0.107216 | \n",
" 0.483100 | \n",
" 0.851476 | \n",
" 0.651523 | \n",
" 0.602201 | \n",
" 0.590090 | \n",
" 0.421486 | \n",
" 0.304977 | \n",
" 0.977240 | \n",
" 0.514393 | \n",
" 0.048044 | \n",
"
\n",
" \n",
" 49 | \n",
" 0.156010 | \n",
" 0.459878 | \n",
" 0.150516 | \n",
" 0.383026 | \n",
" 0.521009 | \n",
" 0.624012 | \n",
" 0.600592 | \n",
" 0.207030 | \n",
" 0.422199 | \n",
" 0.201312 | \n",
" 0.093853 | \n",
" 0.189420 | \n",
" 0.747356 | \n",
" 0.484339 | \n",
" 0.086878 | \n",
" 0.207687 | \n",
" 0.752801 | \n",
" 0.360902 | \n",
" 0.983270 | \n",
" 0.095683 | \n",
" 0.214867 | \n",
" 0.171013 | \n",
" 0.144147 | \n",
" 0.711307 | \n",
" 0.664805 | \n",
" 0.823824 | \n",
" 0.535989 | \n",
" 0.187624 | \n",
" 0.217189 | \n",
" 0.570282 | \n",
"
\n",
" \n",
" 50 | \n",
" 0.293543 | \n",
" 0.271126 | \n",
" 0.657192 | \n",
" 0.500418 | \n",
" 0.870455 | \n",
" 0.015288 | \n",
" 0.101134 | \n",
" 0.486161 | \n",
" 0.690941 | \n",
" 0.754261 | \n",
" 0.360024 | \n",
" 0.133827 | \n",
" 0.217685 | \n",
" 0.890911 | \n",
" 0.805264 | \n",
" 0.761686 | \n",
" 0.482925 | \n",
" 0.873497 | \n",
" 0.790204 | \n",
" 0.691919 | \n",
" 0.113317 | \n",
" 0.901630 | \n",
" 0.205642 | \n",
" 0.347238 | \n",
" 0.850324 | \n",
" 0.432353 | \n",
" 0.222060 | \n",
" 0.298383 | \n",
" 0.664775 | \n",
" 0.958049 | \n",
"
\n",
" \n",
" 51 | \n",
" 0.903622 | \n",
" 0.162809 | \n",
" 0.403062 | \n",
" 0.872035 | \n",
" 0.191751 | \n",
" 0.365048 | \n",
" 0.760181 | \n",
" 0.005005 | \n",
" 0.234919 | \n",
" 0.023112 | \n",
" 0.644316 | \n",
" 0.234862 | \n",
" 0.636849 | \n",
" 0.570068 | \n",
" 0.533310 | \n",
" 0.638862 | \n",
" 0.982652 | \n",
" 0.370607 | \n",
" 0.904483 | \n",
" 0.732998 | \n",
" 0.423471 | \n",
" 0.900475 | \n",
" 0.003570 | \n",
" 0.246337 | \n",
" 0.819377 | \n",
" 0.401650 | \n",
" 0.115449 | \n",
" 0.308261 | \n",
" 0.612941 | \n",
" 0.870673 | \n",
"
\n",
" \n",
" 52 | \n",
" 0.981455 | \n",
" 0.422150 | \n",
" 0.592627 | \n",
" 0.164521 | \n",
" 0.946519 | \n",
" 0.901641 | \n",
" 0.570865 | \n",
" 0.336033 | \n",
" 0.666465 | \n",
" 0.203108 | \n",
" 0.836698 | \n",
" 0.618370 | \n",
" 0.311864 | \n",
" 0.658274 | \n",
" 0.270383 | \n",
" 0.227260 | \n",
" 0.739582 | \n",
" 0.009175 | \n",
" 0.285989 | \n",
" 0.521315 | \n",
" 0.759934 | \n",
" 0.801289 | \n",
" 0.650290 | \n",
" 0.824796 | \n",
" 0.504638 | \n",
" 0.304650 | \n",
" 0.925207 | \n",
" 0.393955 | \n",
" 0.199614 | \n",
" 0.361320 | \n",
"
\n",
" \n",
" 53 | \n",
" 0.953575 | \n",
" 0.922337 | \n",
" 0.884806 | \n",
" 0.299552 | \n",
" 0.679289 | \n",
" 0.711889 | \n",
" 0.440971 | \n",
" 0.073767 | \n",
" 0.381541 | \n",
" 0.685877 | \n",
" 0.389958 | \n",
" 0.786228 | \n",
" 0.037824 | \n",
" 0.399811 | \n",
" 0.662579 | \n",
" 0.424186 | \n",
" 0.303661 | \n",
" 0.254112 | \n",
" 0.583194 | \n",
" 0.846797 | \n",
" 0.531135 | \n",
" 0.838616 | \n",
" 0.170024 | \n",
" 0.300355 | \n",
" 0.381237 | \n",
" 0.997520 | \n",
" 0.247993 | \n",
" 0.954518 | \n",
" 0.220393 | \n",
" 0.734893 | \n",
"
\n",
" \n",
" 54 | \n",
" 0.258229 | \n",
" 0.073306 | \n",
" 0.951804 | \n",
" 0.885290 | \n",
" 0.788127 | \n",
" 0.719723 | \n",
" 0.399676 | \n",
" 0.687057 | \n",
" 0.699859 | \n",
" 0.176459 | \n",
" 0.296652 | \n",
" 0.573588 | \n",
" 0.557119 | \n",
" 0.018452 | \n",
" 0.185157 | \n",
" 0.349415 | \n",
" 0.163049 | \n",
" 0.317488 | \n",
" 0.366420 | \n",
" 0.560923 | \n",
" 0.721519 | \n",
" 0.520232 | \n",
" 0.380921 | \n",
" 0.106550 | \n",
" 0.952323 | \n",
" 0.101439 | \n",
" 0.329474 | \n",
" 0.361227 | \n",
" 0.659153 | \n",
" 0.464153 | \n",
"
\n",
" \n",
" 55 | \n",
" 0.549358 | \n",
" 0.710228 | \n",
" 0.178180 | \n",
" 0.152340 | \n",
" 0.528744 | \n",
" 0.198425 | \n",
" 0.938740 | \n",
" 0.160028 | \n",
" 0.150605 | \n",
" 0.071756 | \n",
" 0.055665 | \n",
" 0.519298 | \n",
" 0.864991 | \n",
" 0.957702 | \n",
" 0.382958 | \n",
" 0.599153 | \n",
" 0.451381 | \n",
" 0.784357 | \n",
" 0.623244 | \n",
" 0.135769 | \n",
" 0.289674 | \n",
" 0.074639 | \n",
" 0.548266 | \n",
" 0.208628 | \n",
" 0.476588 | \n",
" 0.636338 | \n",
" 0.104437 | \n",
" 0.422542 | \n",
" 0.098107 | \n",
" 0.554296 | \n",
"
\n",
" \n",
" 56 | \n",
" 0.621805 | \n",
" 0.524272 | \n",
" 0.235312 | \n",
" 0.526435 | \n",
" 0.657705 | \n",
" 0.229933 | \n",
" 0.235847 | \n",
" 0.282753 | \n",
" 0.834884 | \n",
" 0.122854 | \n",
" 0.848491 | \n",
" 0.741738 | \n",
" 0.494087 | \n",
" 0.306413 | \n",
" 0.894412 | \n",
" 0.190550 | \n",
" 0.910316 | \n",
" 0.311451 | \n",
" 0.824721 | \n",
" 0.504628 | \n",
" 0.369316 | \n",
" 0.730550 | \n",
" 0.242383 | \n",
" 0.692589 | \n",
" 0.589590 | \n",
" 0.383386 | \n",
" 0.480540 | \n",
" 0.741165 | \n",
" 0.831809 | \n",
" 0.777391 | \n",
"
\n",
" \n",
" 57 | \n",
" 0.459047 | \n",
" 0.150274 | \n",
" 0.122675 | \n",
" 0.676454 | \n",
" 0.190762 | \n",
" 0.983444 | \n",
" 0.858931 | \n",
" 0.374379 | \n",
" 0.785685 | \n",
" 0.895374 | \n",
" 0.422959 | \n",
" 0.944429 | \n",
" 0.817486 | \n",
" 0.365144 | \n",
" 0.712443 | \n",
" 0.580169 | \n",
" 0.582657 | \n",
" 0.023031 | \n",
" 0.974471 | \n",
" 0.886274 | \n",
" 0.896820 | \n",
" 0.829163 | \n",
" 0.417331 | \n",
" 0.881706 | \n",
" 0.582530 | \n",
" 0.218453 | \n",
" 0.787999 | \n",
" 0.522737 | \n",
" 0.469207 | \n",
" 0.630730 | \n",
"
\n",
" \n",
" 58 | \n",
" 0.903882 | \n",
" 0.576907 | \n",
" 0.344177 | \n",
" 0.604432 | \n",
" 0.490661 | \n",
" 0.766432 | \n",
" 0.413066 | \n",
" 0.127637 | \n",
" 0.457778 | \n",
" 0.898217 | \n",
" 0.198500 | \n",
" 0.101609 | \n",
" 0.755922 | \n",
" 0.126097 | \n",
" 0.594624 | \n",
" 0.449357 | \n",
" 0.652551 | \n",
" 0.487731 | \n",
" 0.739320 | \n",
" 0.751277 | \n",
" 0.668256 | \n",
" 0.069956 | \n",
" 0.298945 | \n",
" 0.557159 | \n",
" 0.755293 | \n",
" 0.152569 | \n",
" 0.764885 | \n",
" 0.146185 | \n",
" 0.886109 | \n",
" 0.499044 | \n",
"
\n",
" \n",
" 59 | \n",
" 0.561893 | \n",
" 0.597008 | \n",
" 0.255584 | \n",
" 0.322507 | \n",
" 0.879646 | \n",
" 0.708222 | \n",
" 0.311214 | \n",
" 0.054658 | \n",
" 0.306404 | \n",
" 0.352801 | \n",
" 0.207221 | \n",
" 0.131020 | \n",
" 0.894150 | \n",
" 0.736893 | \n",
" 0.036322 | \n",
" 0.829056 | \n",
" 0.001874 | \n",
" 0.766904 | \n",
" 0.107745 | \n",
" 0.181201 | \n",
" 0.209287 | \n",
" 0.704393 | \n",
" 0.466890 | \n",
" 0.771573 | \n",
" 0.657276 | \n",
" 0.762535 | \n",
" 0.415738 | \n",
" 0.802490 | \n",
" 0.518260 | \n",
" 0.679503 | \n",
"
\n",
" \n",
" 60 | \n",
" 0.888263 | \n",
" 0.005625 | \n",
" 0.089216 | \n",
" 0.113007 | \n",
" 0.220397 | \n",
" 0.810721 | \n",
" 0.152707 | \n",
" 0.338453 | \n",
" 0.377245 | \n",
" 0.089314 | \n",
" 0.840349 | \n",
" 0.418788 | \n",
" 0.287238 | \n",
" 0.356639 | \n",
" 0.732129 | \n",
" 0.021448 | \n",
" 0.574784 | \n",
" 0.121079 | \n",
" 0.446276 | \n",
" 0.849435 | \n",
" 0.041734 | \n",
" 0.880450 | \n",
" 0.683843 | \n",
" 0.723314 | \n",
" 0.665375 | \n",
" 0.994892 | \n",
" 0.808250 | \n",
" 0.591550 | \n",
" 0.027459 | \n",
" 0.750605 | \n",
"
\n",
" \n",
" 61 | \n",
" 0.110096 | \n",
" 0.251765 | \n",
" 0.793428 | \n",
" 0.430833 | \n",
" 0.861921 | \n",
" 0.663657 | \n",
" 0.401012 | \n",
" 0.057624 | \n",
" 0.617171 | \n",
" 0.585709 | \n",
" 0.952863 | \n",
" 0.089109 | \n",
" 0.396258 | \n",
" 0.514058 | \n",
" 0.024191 | \n",
" 0.328654 | \n",
" 0.717438 | \n",
" 0.022365 | \n",
" 0.142573 | \n",
" 0.205886 | \n",
" 0.647488 | \n",
" 0.524721 | \n",
" 0.193966 | \n",
" 0.623070 | \n",
" 0.079615 | \n",
" 0.835274 | \n",
" 0.758916 | \n",
" 0.644262 | \n",
" 0.800594 | \n",
" 0.906065 | \n",
"
\n",
" \n",
" 62 | \n",
" 0.373095 | \n",
" 0.674368 | \n",
" 0.006626 | \n",
" 0.531828 | \n",
" 0.103363 | \n",
" 0.224212 | \n",
" 0.448203 | \n",
" 0.691698 | \n",
" 0.372925 | \n",
" 0.262914 | \n",
" 0.024516 | \n",
" 0.122373 | \n",
" 0.311720 | \n",
" 0.382394 | \n",
" 0.409725 | \n",
" 0.729299 | \n",
" 0.268347 | \n",
" 0.229804 | \n",
" 0.150551 | \n",
" 0.426595 | \n",
" 0.240304 | \n",
" 0.911477 | \n",
" 0.609629 | \n",
" 0.114163 | \n",
" 0.633115 | \n",
" 0.941467 | \n",
" 0.556431 | \n",
" 0.597430 | \n",
" 0.269005 | \n",
" 0.758348 | \n",
"
\n",
" \n",
" 63 | \n",
" 0.442777 | \n",
" 0.000470 | \n",
" 0.349322 | \n",
" 0.847618 | \n",
" 0.216712 | \n",
" 0.393309 | \n",
" 0.658365 | \n",
" 0.232768 | \n",
" 0.788810 | \n",
" 0.511310 | \n",
" 0.295138 | \n",
" 0.542790 | \n",
" 0.636588 | \n",
" 0.779574 | \n",
" 0.959593 | \n",
" 0.778705 | \n",
" 0.365191 | \n",
" 0.398598 | \n",
" 0.250133 | \n",
" 0.669720 | \n",
" 0.068832 | \n",
" 0.150054 | \n",
" 0.699938 | \n",
" 0.367287 | \n",
" 0.580641 | \n",
" 0.191205 | \n",
" 0.107215 | \n",
" 0.032595 | \n",
" 0.379773 | \n",
" 0.619523 | \n",
"
\n",
" \n",
" 64 | \n",
" 0.530668 | \n",
" 0.376467 | \n",
" 0.338522 | \n",
" 0.351587 | \n",
" 0.392377 | \n",
" 0.291380 | \n",
" 0.241266 | \n",
" 0.430250 | \n",
" 0.804930 | \n",
" 0.326878 | \n",
" 0.867327 | \n",
" 0.496549 | \n",
" 0.543669 | \n",
" 0.930088 | \n",
" 0.194347 | \n",
" 0.209162 | \n",
" 0.603991 | \n",
" 0.073787 | \n",
" 0.435740 | \n",
" 0.968915 | \n",
" 0.047523 | \n",
" 0.044949 | \n",
" 0.055982 | \n",
" 0.464782 | \n",
" 0.185307 | \n",
" 0.689003 | \n",
" 0.236008 | \n",
" 0.771977 | \n",
" 0.751289 | \n",
" 0.392166 | \n",
"
\n",
" \n",
" 65 | \n",
" 0.168931 | \n",
" 0.914029 | \n",
" 0.309646 | \n",
" 0.326802 | \n",
" 0.068219 | \n",
" 0.379085 | \n",
" 0.049438 | \n",
" 0.594426 | \n",
" 0.162537 | \n",
" 0.163292 | \n",
" 0.396039 | \n",
" 0.313997 | \n",
" 0.151314 | \n",
" 0.231237 | \n",
" 0.834722 | \n",
" 0.939717 | \n",
" 0.469184 | \n",
" 0.578252 | \n",
" 0.123564 | \n",
" 0.656203 | \n",
" 0.212590 | \n",
" 0.820115 | \n",
" 0.052182 | \n",
" 0.267062 | \n",
" 0.124191 | \n",
" 0.430600 | \n",
" 0.446272 | \n",
" 0.779073 | \n",
" 0.790516 | \n",
" 0.533594 | \n",
"
\n",
" \n",
" 66 | \n",
" 0.969493 | \n",
" 0.084686 | \n",
" 0.826482 | \n",
" 0.108448 | \n",
" 0.569722 | \n",
" 0.617112 | \n",
" 0.646065 | \n",
" 0.161539 | \n",
" 0.730931 | \n",
" 0.940965 | \n",
" 0.950832 | \n",
" 0.538184 | \n",
" 0.872905 | \n",
" 0.207183 | \n",
" 0.586554 | \n",
" 0.185640 | \n",
" 0.461027 | \n",
" 0.602014 | \n",
" 0.724557 | \n",
" 0.886336 | \n",
" 0.099279 | \n",
" 0.952010 | \n",
" 0.361844 | \n",
" 0.746798 | \n",
" 0.248278 | \n",
" 0.097081 | \n",
" 0.499007 | \n",
" 0.015886 | \n",
" 0.489082 | \n",
" 0.985338 | \n",
"
\n",
" \n",
" 67 | \n",
" 0.341085 | \n",
" 0.556542 | \n",
" 0.229091 | \n",
" 0.524727 | \n",
" 0.367717 | \n",
" 0.749818 | \n",
" 0.047264 | \n",
" 0.952503 | \n",
" 0.244925 | \n",
" 0.748086 | \n",
" 0.975804 | \n",
" 0.242086 | \n",
" 0.415957 | \n",
" 0.271573 | \n",
" 0.316028 | \n",
" 0.614613 | \n",
" 0.303237 | \n",
" 0.163130 | \n",
" 0.196834 | \n",
" 0.906492 | \n",
" 0.262982 | \n",
" 0.386960 | \n",
" 0.382168 | \n",
" 0.086392 | \n",
" 0.141270 | \n",
" 0.282643 | \n",
" 0.396020 | \n",
" 0.178328 | \n",
" 0.856421 | \n",
" 0.458342 | \n",
"
\n",
" \n",
" 68 | \n",
" 0.028708 | \n",
" 0.463375 | \n",
" 0.149176 | \n",
" 0.202438 | \n",
" 0.763428 | \n",
" 0.562348 | \n",
" 0.557011 | \n",
" 0.840089 | \n",
" 0.418843 | \n",
" 0.050686 | \n",
" 0.908020 | \n",
" 0.904373 | \n",
" 0.764753 | \n",
" 0.996586 | \n",
" 0.182455 | \n",
" 0.033250 | \n",
" 0.859588 | \n",
" 0.085220 | \n",
" 0.675355 | \n",
" 0.925079 | \n",
" 0.549517 | \n",
" 0.117069 | \n",
" 0.183175 | \n",
" 0.530703 | \n",
" 0.509579 | \n",
" 0.672034 | \n",
" 0.319676 | \n",
" 0.782981 | \n",
" 0.014328 | \n",
" 0.609038 | \n",
"
\n",
" \n",
" 69 | \n",
" 0.783115 | \n",
" 0.800046 | \n",
" 0.883843 | \n",
" 0.883993 | \n",
" 0.228633 | \n",
" 0.823703 | \n",
" 0.717880 | \n",
" 0.897609 | \n",
" 0.404378 | \n",
" 0.021706 | \n",
" 0.618371 | \n",
" 0.906555 | \n",
" 0.406228 | \n",
" 0.399742 | \n",
" 0.042835 | \n",
" 0.912831 | \n",
" 0.395944 | \n",
" 0.271927 | \n",
" 0.628504 | \n",
" 0.174363 | \n",
" 0.798152 | \n",
" 0.944091 | \n",
" 0.485462 | \n",
" 0.305534 | \n",
" 0.195840 | \n",
" 0.373059 | \n",
" 0.815720 | \n",
" 0.145745 | \n",
" 0.860231 | \n",
" 0.946066 | \n",
"
\n",
" \n",
" 70 | \n",
" 0.973698 | \n",
" 0.726040 | \n",
" 0.639923 | \n",
" 0.316196 | \n",
" 0.494202 | \n",
" 0.536626 | \n",
" 0.408289 | \n",
" 0.227556 | \n",
" 0.454884 | \n",
" 0.737726 | \n",
" 0.518611 | \n",
" 0.341362 | \n",
" 0.055167 | \n",
" 0.162260 | \n",
" 0.971913 | \n",
" 0.742634 | \n",
" 0.569280 | \n",
" 0.963495 | \n",
" 0.526262 | \n",
" 0.463755 | \n",
" 0.176424 | \n",
" 0.281526 | \n",
" 0.021693 | \n",
" 0.213761 | \n",
" 0.219988 | \n",
" 0.435527 | \n",
" 0.449357 | \n",
" 0.759042 | \n",
" 0.059454 | \n",
" 0.882776 | \n",
"
\n",
" \n",
" 71 | \n",
" 0.782099 | \n",
" 0.685117 | \n",
" 0.025872 | \n",
" 0.334492 | \n",
" 0.373683 | \n",
" 0.477641 | \n",
" 0.568215 | \n",
" 0.779146 | \n",
" 0.071995 | \n",
" 0.785226 | \n",
" 0.712795 | \n",
" 0.380059 | \n",
" 0.100539 | \n",
" 0.806584 | \n",
" 0.856195 | \n",
" 0.190467 | \n",
" 0.524509 | \n",
" 0.923388 | \n",
" 0.885587 | \n",
" 0.142400 | \n",
" 0.068274 | \n",
" 0.551541 | \n",
" 0.324617 | \n",
" 0.048629 | \n",
" 0.105459 | \n",
" 0.427634 | \n",
" 0.178608 | \n",
" 0.079104 | \n",
" 0.338519 | \n",
" 0.832808 | \n",
"
\n",
" \n",
" 72 | \n",
" 0.332245 | \n",
" 0.609512 | \n",
" 0.707263 | \n",
" 0.815713 | \n",
" 0.793509 | \n",
" 0.721522 | \n",
" 0.923366 | \n",
" 0.041724 | \n",
" 0.165307 | \n",
" 0.691348 | \n",
" 0.316237 | \n",
" 0.799991 | \n",
" 0.955482 | \n",
" 0.325381 | \n",
" 0.224191 | \n",
" 0.224140 | \n",
" 0.039197 | \n",
" 0.796239 | \n",
" 0.691752 | \n",
" 0.270912 | \n",
" 0.223103 | \n",
" 0.428264 | \n",
" 0.739740 | \n",
" 0.750224 | \n",
" 0.090991 | \n",
" 0.510390 | \n",
" 0.078146 | \n",
" 0.073564 | \n",
" 0.568727 | \n",
" 0.106031 | \n",
"
\n",
" \n",
" 73 | \n",
" 0.400545 | \n",
" 0.762777 | \n",
" 0.738563 | \n",
" 0.737075 | \n",
" 0.336047 | \n",
" 0.932191 | \n",
" 0.801716 | \n",
" 0.287510 | \n",
" 0.552654 | \n",
" 0.702003 | \n",
" 0.538719 | \n",
" 0.964124 | \n",
" 0.193855 | \n",
" 0.286752 | \n",
" 0.956875 | \n",
" 0.172407 | \n",
" 0.469483 | \n",
" 0.587602 | \n",
" 0.216050 | \n",
" 0.197944 | \n",
" 0.753592 | \n",
" 0.442888 | \n",
" 0.699712 | \n",
" 0.656769 | \n",
" 0.882594 | \n",
" 0.381329 | \n",
" 0.846669 | \n",
" 0.301897 | \n",
" 0.016270 | \n",
" 0.811660 | \n",
"
\n",
" \n",
" 74 | \n",
" 0.088581 | \n",
" 0.170916 | \n",
" 0.008525 | \n",
" 0.202978 | \n",
" 0.271690 | \n",
" 0.594154 | \n",
" 0.780043 | \n",
" 0.810323 | \n",
" 0.807003 | \n",
" 0.638173 | \n",
" 0.946288 | \n",
" 0.330072 | \n",
" 0.687379 | \n",
" 0.245010 | \n",
" 0.652627 | \n",
" 0.583266 | \n",
" 0.926175 | \n",
" 0.699227 | \n",
" 0.390555 | \n",
" 0.707715 | \n",
" 0.197371 | \n",
" 0.183450 | \n",
" 0.728087 | \n",
" 0.412985 | \n",
" 0.012570 | \n",
" 0.935167 | \n",
" 0.037356 | \n",
" 0.693228 | \n",
" 0.191860 | \n",
" 0.630727 | \n",
"
\n",
" \n",
" 75 | \n",
" 0.217685 | \n",
" 0.332907 | \n",
" 0.253683 | \n",
" 0.167637 | \n",
" 0.712248 | \n",
" 0.334669 | \n",
" 0.669454 | \n",
" 0.566433 | \n",
" 0.551753 | \n",
" 0.949788 | \n",
" 0.199111 | \n",
" 0.186971 | \n",
" 0.925138 | \n",
" 0.429849 | \n",
" 0.100118 | \n",
" 0.245210 | \n",
" 0.005838 | \n",
" 0.328856 | \n",
" 0.472778 | \n",
" 0.702947 | \n",
" 0.784864 | \n",
" 0.907587 | \n",
" 0.498185 | \n",
" 0.672659 | \n",
" 0.678085 | \n",
" 0.240770 | \n",
" 0.309763 | \n",
" 0.555630 | \n",
" 0.948622 | \n",
" 0.561589 | \n",
"
\n",
" \n",
" 76 | \n",
" 0.953669 | \n",
" 0.936532 | \n",
" 0.519399 | \n",
" 0.407463 | \n",
" 0.124661 | \n",
" 0.032237 | \n",
" 0.057315 | \n",
" 0.324400 | \n",
" 0.918338 | \n",
" 0.078754 | \n",
" 0.870815 | \n",
" 0.038274 | \n",
" 0.458141 | \n",
" 0.490392 | \n",
" 0.061840 | \n",
" 0.601993 | \n",
" 0.581063 | \n",
" 0.678933 | \n",
" 0.394721 | \n",
" 0.203167 | \n",
" 0.703948 | \n",
" 0.884715 | \n",
" 0.743305 | \n",
" 0.092940 | \n",
" 0.462505 | \n",
" 0.221352 | \n",
" 0.237253 | \n",
" 0.876668 | \n",
" 0.164604 | \n",
" 0.362618 | \n",
"
\n",
" \n",
" 77 | \n",
" 0.337216 | \n",
" 0.119393 | \n",
" 0.140407 | \n",
" 0.358066 | \n",
" 0.403849 | \n",
" 0.153271 | \n",
" 0.030057 | \n",
" 0.693285 | \n",
" 0.950651 | \n",
" 0.297738 | \n",
" 0.459632 | \n",
" 0.627602 | \n",
" 0.563293 | \n",
" 0.052328 | \n",
" 0.717753 | \n",
" 0.526154 | \n",
" 0.658606 | \n",
" 0.066890 | \n",
" 0.042696 | \n",
" 0.201334 | \n",
" 0.641133 | \n",
" 0.300364 | \n",
" 0.835279 | \n",
" 0.337558 | \n",
" 0.372496 | \n",
" 0.087397 | \n",
" 0.926316 | \n",
" 0.437987 | \n",
" 0.844932 | \n",
" 0.575924 | \n",
"
\n",
" \n",
" 78 | \n",
" 0.867706 | \n",
" 0.960807 | \n",
" 0.292504 | \n",
" 0.782552 | \n",
" 0.923039 | \n",
" 0.448507 | \n",
" 0.367906 | \n",
" 0.668406 | \n",
" 0.213995 | \n",
" 0.596635 | \n",
" 0.711361 | \n",
" 0.473227 | \n",
" 0.624156 | \n",
" 0.164661 | \n",
" 0.355097 | \n",
" 0.635242 | \n",
" 0.469168 | \n",
" 0.312519 | \n",
" 0.792453 | \n",
" 0.711826 | \n",
" 0.825279 | \n",
" 0.790778 | \n",
" 0.262842 | \n",
" 0.774944 | \n",
" 0.323007 | \n",
" 0.590386 | \n",
" 0.458286 | \n",
" 0.118084 | \n",
" 0.823297 | \n",
" 0.871790 | \n",
"
\n",
" \n",
" 79 | \n",
" 0.464712 | \n",
" 0.638916 | \n",
" 0.596911 | \n",
" 0.400870 | \n",
" 0.389924 | \n",
" 0.455020 | \n",
" 0.707760 | \n",
" 0.285201 | \n",
" 0.285224 | \n",
" 0.786104 | \n",
" 0.561744 | \n",
" 0.714790 | \n",
" 0.159662 | \n",
" 0.783853 | \n",
" 0.728461 | \n",
" 0.403996 | \n",
" 0.030646 | \n",
" 0.388762 | \n",
" 0.716370 | \n",
" 0.089414 | \n",
" 0.191447 | \n",
" 0.419190 | \n",
" 0.367281 | \n",
" 0.378881 | \n",
" 0.462889 | \n",
" 0.850073 | \n",
" 0.114963 | \n",
" 0.423717 | \n",
" 0.210187 | \n",
" 0.802821 | \n",
"
\n",
" \n",
" 80 | \n",
" 0.640694 | \n",
" 0.652765 | \n",
" 0.172012 | \n",
" 0.238701 | \n",
" 0.435301 | \n",
" 0.632372 | \n",
" 0.835614 | \n",
" 0.340019 | \n",
" 0.624258 | \n",
" 0.596465 | \n",
" 0.618562 | \n",
" 0.715032 | \n",
" 0.009530 | \n",
" 0.329951 | \n",
" 0.113655 | \n",
" 0.253422 | \n",
" 0.819658 | \n",
" 0.760127 | \n",
" 0.049612 | \n",
" 0.748235 | \n",
" 0.276491 | \n",
" 0.079133 | \n",
" 0.597637 | \n",
" 0.976567 | \n",
" 0.862701 | \n",
" 0.753617 | \n",
" 0.715103 | \n",
" 0.418215 | \n",
" 0.168063 | \n",
" 0.244866 | \n",
"
\n",
" \n",
" 81 | \n",
" 0.542074 | \n",
" 0.470207 | \n",
" 0.361913 | \n",
" 0.498920 | \n",
" 0.595839 | \n",
" 0.560050 | \n",
" 0.184479 | \n",
" 0.104579 | \n",
" 0.068542 | \n",
" 0.012931 | \n",
" 0.875295 | \n",
" 0.687544 | \n",
" 0.616432 | \n",
" 0.750181 | \n",
" 0.841943 | \n",
" 0.982929 | \n",
" 0.770140 | \n",
" 0.048483 | \n",
" 0.005412 | \n",
" 0.017292 | \n",
" 0.391493 | \n",
" 0.420823 | \n",
" 0.891302 | \n",
" 0.597312 | \n",
" 0.489133 | \n",
" 0.672835 | \n",
" 0.979283 | \n",
" 0.423083 | \n",
" 0.450852 | \n",
" 0.491330 | \n",
"
\n",
" \n",
" 82 | \n",
" 0.446899 | \n",
" 0.956943 | \n",
" 0.421512 | \n",
" 0.671973 | \n",
" 0.493486 | \n",
" 0.706159 | \n",
" 0.811837 | \n",
" 0.988642 | \n",
" 0.653512 | \n",
" 0.658120 | \n",
" 0.012855 | \n",
" 0.744878 | \n",
" 0.350415 | \n",
" 0.984497 | \n",
" 0.553889 | \n",
" 0.072274 | \n",
" 0.230562 | \n",
" 0.985526 | \n",
" 0.341784 | \n",
" 0.341256 | \n",
" 0.926718 | \n",
" 0.374552 | \n",
" 0.815879 | \n",
" 0.087653 | \n",
" 0.062792 | \n",
" 0.441571 | \n",
" 0.381581 | \n",
" 0.653622 | \n",
" 0.638020 | \n",
" 0.639932 | \n",
"
\n",
" \n",
" 83 | \n",
" 0.046757 | \n",
" 0.093515 | \n",
" 0.978705 | \n",
" 0.073193 | \n",
" 0.087144 | \n",
" 0.628222 | \n",
" 0.237686 | \n",
" 0.202346 | \n",
" 0.455385 | \n",
" 0.453386 | \n",
" 0.558833 | \n",
" 0.899820 | \n",
" 0.129453 | \n",
" 0.230235 | \n",
" 0.912613 | \n",
" 0.725789 | \n",
" 0.191705 | \n",
" 0.521836 | \n",
" 0.169267 | \n",
" 0.234400 | \n",
" 0.697058 | \n",
" 0.400330 | \n",
" 0.517042 | \n",
" 0.010785 | \n",
" 0.180624 | \n",
" 0.371430 | \n",
" 0.392193 | \n",
" 0.581574 | \n",
" 0.664830 | \n",
" 0.846698 | \n",
"
\n",
" \n",
" 84 | \n",
" 0.192386 | \n",
" 0.232344 | \n",
" 0.390192 | \n",
" 0.828145 | \n",
" 0.793634 | \n",
" 0.749096 | \n",
" 0.810883 | \n",
" 0.700307 | \n",
" 0.307748 | \n",
" 0.483095 | \n",
" 0.057844 | \n",
" 0.016603 | \n",
" 0.318474 | \n",
" 0.959070 | \n",
" 0.769295 | \n",
" 0.794240 | \n",
" 0.365978 | \n",
" 0.875939 | \n",
" 0.688364 | \n",
" 0.340601 | \n",
" 0.749707 | \n",
" 0.855207 | \n",
" 0.437958 | \n",
" 0.202583 | \n",
" 0.586047 | \n",
" 0.223368 | \n",
" 0.178667 | \n",
" 0.094266 | \n",
" 0.676757 | \n",
" 0.813497 | \n",
"
\n",
" \n",
" 85 | \n",
" 0.146629 | \n",
" 0.975754 | \n",
" 0.197536 | \n",
" 0.408597 | \n",
" 0.193925 | \n",
" 0.309173 | \n",
" 0.331368 | \n",
" 0.296980 | \n",
" 0.382561 | \n",
" 0.957489 | \n",
" 0.254395 | \n",
" 0.250440 | \n",
" 0.426225 | \n",
" 0.106639 | \n",
" 0.094297 | \n",
" 0.579362 | \n",
" 0.300533 | \n",
" 0.416860 | \n",
" 0.526611 | \n",
" 0.493474 | \n",
" 0.446917 | \n",
" 0.702993 | \n",
" 0.202714 | \n",
" 0.800684 | \n",
" 0.581990 | \n",
" 0.832557 | \n",
" 0.681088 | \n",
" 0.529595 | \n",
" 0.711596 | \n",
" 0.172003 | \n",
"
\n",
" \n",
" 86 | \n",
" 0.973764 | \n",
" 0.768562 | \n",
" 0.214984 | \n",
" 0.891570 | \n",
" 0.052226 | \n",
" 0.568626 | \n",
" 0.203127 | \n",
" 0.906710 | \n",
" 0.827621 | \n",
" 0.994204 | \n",
" 0.969008 | \n",
" 0.418948 | \n",
" 0.342615 | \n",
" 0.251654 | \n",
" 0.266212 | \n",
" 0.682123 | \n",
" 0.546489 | \n",
" 0.005642 | \n",
" 0.380782 | \n",
" 0.024447 | \n",
" 0.710405 | \n",
" 0.963374 | \n",
" 0.002851 | \n",
" 0.278126 | \n",
" 0.303319 | \n",
" 0.382781 | \n",
" 0.228294 | \n",
" 0.117718 | \n",
" 0.958912 | \n",
" 0.984522 | \n",
"
\n",
" \n",
" 87 | \n",
" 0.935958 | \n",
" 0.112951 | \n",
" 0.503738 | \n",
" 0.030938 | \n",
" 0.020705 | \n",
" 0.219586 | \n",
" 0.697179 | \n",
" 0.523962 | \n",
" 0.738986 | \n",
" 0.306575 | \n",
" 0.208350 | \n",
" 0.518736 | \n",
" 0.252732 | \n",
" 0.317812 | \n",
" 0.372713 | \n",
" 0.995537 | \n",
" 0.917949 | \n",
" 0.928822 | \n",
" 0.622103 | \n",
" 0.868068 | \n",
" 0.078160 | \n",
" 0.428651 | \n",
" 0.148882 | \n",
" 0.194853 | \n",
" 0.329601 | \n",
" 0.455193 | \n",
" 0.134463 | \n",
" 0.739601 | \n",
" 0.143992 | \n",
" 0.522306 | \n",
"
\n",
" \n",
" 88 | \n",
" 0.503141 | \n",
" 0.291031 | \n",
" 0.299887 | \n",
" 0.088615 | \n",
" 0.826193 | \n",
" 0.694264 | \n",
" 0.048398 | \n",
" 0.205266 | \n",
" 0.579757 | \n",
" 0.298720 | \n",
" 0.176049 | \n",
" 0.370353 | \n",
" 0.885604 | \n",
" 0.455893 | \n",
" 0.692277 | \n",
" 0.977451 | \n",
" 0.977567 | \n",
" 0.323352 | \n",
" 0.270029 | \n",
" 0.999281 | \n",
" 0.202091 | \n",
" 0.066818 | \n",
" 0.137034 | \n",
" 0.248964 | \n",
" 0.490571 | \n",
" 0.553426 | \n",
" 0.839173 | \n",
" 0.139945 | \n",
" 0.849452 | \n",
" 0.852110 | \n",
"
\n",
" \n",
" 89 | \n",
" 0.517243 | \n",
" 0.151222 | \n",
" 0.625420 | \n",
" 0.026652 | \n",
" 0.179042 | \n",
" 0.866507 | \n",
" 0.305781 | \n",
" 0.379515 | \n",
" 0.752613 | \n",
" 0.880888 | \n",
" 0.728655 | \n",
" 0.198675 | \n",
" 0.563817 | \n",
" 0.331599 | \n",
" 0.793669 | \n",
" 0.274265 | \n",
" 0.664210 | \n",
" 0.418347 | \n",
" 0.784137 | \n",
" 0.472254 | \n",
" 0.837649 | \n",
" 0.714594 | \n",
" 0.127457 | \n",
" 0.151064 | \n",
" 0.844610 | \n",
" 0.281106 | \n",
" 0.308681 | \n",
" 0.831363 | \n",
" 0.940927 | \n",
" 0.396301 | \n",
"
\n",
" \n",
" 90 | \n",
" 0.246551 | \n",
" 0.410989 | \n",
" 0.182548 | \n",
" 0.710385 | \n",
" 0.525971 | \n",
" 0.187429 | \n",
" 0.625125 | \n",
" 0.573944 | \n",
" 0.898057 | \n",
" 0.295871 | \n",
" 0.455465 | \n",
" 0.799077 | \n",
" 0.824962 | \n",
" 0.309985 | \n",
" 0.284436 | \n",
" 0.679448 | \n",
" 0.677339 | \n",
" 0.031058 | \n",
" 0.342612 | \n",
" 0.712220 | \n",
" 0.800766 | \n",
" 0.775104 | \n",
" 0.766749 | \n",
" 0.391896 | \n",
" 0.954093 | \n",
" 0.741952 | \n",
" 0.735355 | \n",
" 0.970587 | \n",
" 0.673959 | \n",
" 0.839634 | \n",
"
\n",
" \n",
" 91 | \n",
" 0.281104 | \n",
" 0.208051 | \n",
" 0.300065 | \n",
" 0.559628 | \n",
" 0.080885 | \n",
" 0.489182 | \n",
" 0.677172 | \n",
" 0.078778 | \n",
" 0.074930 | \n",
" 0.610005 | \n",
" 0.136230 | \n",
" 0.293313 | \n",
" 0.748696 | \n",
" 0.483137 | \n",
" 0.161082 | \n",
" 0.733307 | \n",
" 0.835505 | \n",
" 0.110934 | \n",
" 0.448179 | \n",
" 0.367703 | \n",
" 0.844146 | \n",
" 0.490336 | \n",
" 0.689666 | \n",
" 0.900623 | \n",
" 0.278627 | \n",
" 0.491377 | \n",
" 0.713210 | \n",
" 0.246250 | \n",
" 0.472259 | \n",
" 0.313519 | \n",
"
\n",
" \n",
" 92 | \n",
" 0.202205 | \n",
" 0.222882 | \n",
" 0.836638 | \n",
" 0.188745 | \n",
" 0.526511 | \n",
" 0.142976 | \n",
" 0.932710 | \n",
" 0.477066 | \n",
" 0.559919 | \n",
" 0.061231 | \n",
" 0.276869 | \n",
" 0.089255 | \n",
" 0.749884 | \n",
" 0.223453 | \n",
" 0.330966 | \n",
" 0.752482 | \n",
" 0.111778 | \n",
" 0.233322 | \n",
" 0.225039 | \n",
" 0.814970 | \n",
" 0.669704 | \n",
" 0.784607 | \n",
" 0.980003 | \n",
" 0.074185 | \n",
" 0.503369 | \n",
" 0.614454 | \n",
" 0.129876 | \n",
" 0.074444 | \n",
" 0.035547 | \n",
" 0.263580 | \n",
"
\n",
" \n",
" 93 | \n",
" 0.365328 | \n",
" 0.067016 | \n",
" 0.260479 | \n",
" 0.833927 | \n",
" 0.174271 | \n",
" 0.328066 | \n",
" 0.120953 | \n",
" 0.986426 | \n",
" 0.373958 | \n",
" 0.954289 | \n",
" 0.684058 | \n",
" 0.496419 | \n",
" 0.849028 | \n",
" 0.033297 | \n",
" 0.051117 | \n",
" 0.394829 | \n",
" 0.084870 | \n",
" 0.705926 | \n",
" 0.105378 | \n",
" 0.424805 | \n",
" 0.736945 | \n",
" 0.384884 | \n",
" 0.627406 | \n",
" 0.101251 | \n",
" 0.897678 | \n",
" 0.566562 | \n",
" 0.951890 | \n",
" 0.490194 | \n",
" 0.781995 | \n",
" 0.407303 | \n",
"
\n",
" \n",
" 94 | \n",
" 0.099917 | \n",
" 0.972960 | \n",
" 0.248563 | \n",
" 0.939709 | \n",
" 0.278545 | \n",
" 0.874784 | \n",
" 0.623881 | \n",
" 0.254895 | \n",
" 0.699770 | \n",
" 0.280449 | \n",
" 0.799373 | \n",
" 0.376013 | \n",
" 0.668393 | \n",
" 0.447490 | \n",
" 0.209683 | \n",
" 0.979850 | \n",
" 0.571784 | \n",
" 0.225737 | \n",
" 0.029467 | \n",
" 0.791515 | \n",
" 0.952270 | \n",
" 0.556615 | \n",
" 0.639764 | \n",
" 0.161342 | \n",
" 0.669579 | \n",
" 0.122120 | \n",
" 0.385166 | \n",
" 0.969815 | \n",
" 0.061409 | \n",
" 0.089618 | \n",
"
\n",
" \n",
" 95 | \n",
" 0.384575 | \n",
" 0.808233 | \n",
" 0.410293 | \n",
" 0.546478 | \n",
" 0.363510 | \n",
" 0.550752 | \n",
" 0.865433 | \n",
" 0.263930 | \n",
" 0.089405 | \n",
" 0.020224 | \n",
" 0.448728 | \n",
" 0.379692 | \n",
" 0.123062 | \n",
" 0.843833 | \n",
" 0.535687 | \n",
" 0.553492 | \n",
" 0.743439 | \n",
" 0.897055 | \n",
" 0.903819 | \n",
" 0.460931 | \n",
" 0.634256 | \n",
" 0.488520 | \n",
" 0.682969 | \n",
" 0.964561 | \n",
" 0.899604 | \n",
" 0.378423 | \n",
" 0.644292 | \n",
" 0.677258 | \n",
" 0.353208 | \n",
" 0.098977 | \n",
"
\n",
" \n",
" 96 | \n",
" 0.972265 | \n",
" 0.855608 | \n",
" 0.431820 | \n",
" 0.887729 | \n",
" 0.095447 | \n",
" 0.013635 | \n",
" 0.005369 | \n",
" 0.053794 | \n",
" 0.947760 | \n",
" 0.156041 | \n",
" 0.533009 | \n",
" 0.126280 | \n",
" 0.846932 | \n",
" 0.698638 | \n",
" 0.208158 | \n",
" 0.502204 | \n",
" 0.804167 | \n",
" 0.663162 | \n",
" 0.272953 | \n",
" 0.839197 | \n",
" 0.914726 | \n",
" 0.640468 | \n",
" 0.527957 | \n",
" 0.277913 | \n",
" 0.429337 | \n",
" 0.589427 | \n",
" 0.609376 | \n",
" 0.701999 | \n",
" 0.274253 | \n",
" 0.105528 | \n",
"
\n",
" \n",
" 97 | \n",
" 0.443013 | \n",
" 0.070544 | \n",
" 0.189925 | \n",
" 0.031860 | \n",
" 0.706069 | \n",
" 0.678759 | \n",
" 0.608366 | \n",
" 0.090716 | \n",
" 0.644679 | \n",
" 0.498870 | \n",
" 0.768818 | \n",
" 0.385197 | \n",
" 0.477038 | \n",
" 0.331151 | \n",
" 0.850054 | \n",
" 0.689241 | \n",
" 0.025337 | \n",
" 0.080979 | \n",
" 0.775769 | \n",
" 0.041505 | \n",
" 0.685892 | \n",
" 0.890387 | \n",
" 0.888898 | \n",
" 0.443587 | \n",
" 0.018628 | \n",
" 0.549022 | \n",
" 0.642324 | \n",
" 0.479254 | \n",
" 0.050797 | \n",
" 0.228636 | \n",
"
\n",
" \n",
" 98 | \n",
" 0.077568 | \n",
" 0.949501 | \n",
" 0.485272 | \n",
" 0.578740 | \n",
" 0.499380 | \n",
" 0.327019 | \n",
" 0.343815 | \n",
" 0.874237 | \n",
" 0.294809 | \n",
" 0.293207 | \n",
" 0.972275 | \n",
" 0.666216 | \n",
" 0.361570 | \n",
" 0.410536 | \n",
" 0.710539 | \n",
" 0.504775 | \n",
" 0.434745 | \n",
" 0.502746 | \n",
" 0.228916 | \n",
" 0.516033 | \n",
" 0.765215 | \n",
" 0.099779 | \n",
" 0.944932 | \n",
" 0.646978 | \n",
" 0.565845 | \n",
" 0.961522 | \n",
" 0.042999 | \n",
" 0.745851 | \n",
" 0.070118 | \n",
" 0.014579 | \n",
"
\n",
" \n",
" 99 | \n",
" 0.155376 | \n",
" 0.957772 | \n",
" 0.817545 | \n",
" 0.087401 | \n",
" 0.692598 | \n",
" 0.468097 | \n",
" 0.913008 | \n",
" 0.567578 | \n",
" 0.247393 | \n",
" 0.620830 | \n",
" 0.199235 | \n",
" 0.989452 | \n",
" 0.160533 | \n",
" 0.269349 | \n",
" 0.634714 | \n",
" 0.709957 | \n",
" 0.637265 | \n",
" 0.871948 | \n",
" 0.866360 | \n",
" 0.175904 | \n",
" 0.392456 | \n",
" 0.260810 | \n",
" 0.912724 | \n",
" 0.179538 | \n",
" 0.363543 | \n",
" 0.810410 | \n",
" 0.292306 | \n",
" 0.195655 | \n",
" 0.623025 | \n",
" 0.853659 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" 0 1 2 3 4 5 6 \\\n",
"0 0.901742 0.868402 0.626751 0.805517 0.702326 0.635825 0.081778 \n",
"1 0.491426 0.584446 0.525093 0.719466 0.765294 0.368640 0.439217 \n",
"2 0.798883 0.821652 0.390241 0.376169 0.809637 0.485191 0.535743 \n",
"3 0.374281 0.025460 0.466751 0.811396 0.470298 0.685114 0.795139 \n",
"4 0.260491 0.177377 0.962863 0.133829 0.716351 0.557946 0.907913 \n",
"5 0.823392 0.542735 0.647765 0.811117 0.824598 0.812442 0.790274 \n",
"6 0.174582 0.814848 0.607036 0.418719 0.907148 0.089590 0.571128 \n",
"7 0.546791 0.707528 0.979713 0.107482 0.593430 0.528918 0.590753 \n",
"8 0.152891 0.870828 0.052070 0.943543 0.203708 0.019166 0.716120 \n",
"9 0.622080 0.270636 0.906498 0.023314 0.676899 0.611577 0.568219 \n",
"10 0.846489 0.269708 0.970902 0.671915 0.992466 0.250554 0.607763 \n",
"11 0.069933 0.128561 0.787535 0.365745 0.779097 0.920280 0.246573 \n",
"12 0.062334 0.923280 0.003589 0.478470 0.528231 0.195763 0.226064 \n",
"13 0.443019 0.289886 0.788840 0.701972 0.952204 0.328908 0.009426 \n",
"14 0.808068 0.018873 0.154060 0.193737 0.091614 0.032728 0.808892 \n",
"15 0.503116 0.277635 0.065355 0.563814 0.189082 0.420835 0.522877 \n",
"16 0.743084 0.379264 0.584380 0.737356 0.460058 0.863427 0.487050 \n",
"17 0.057854 0.474164 0.382057 0.987858 0.870524 0.486325 0.039846 \n",
"18 0.431281 0.863277 0.537359 0.031353 0.645197 0.595668 0.209443 \n",
"19 0.944137 0.484956 0.694314 0.596388 0.496805 0.066082 0.347798 \n",
"20 0.368692 0.846403 0.106816 0.074808 0.419144 0.921883 0.734816 \n",
"21 0.214098 0.087049 0.851842 0.253189 0.380128 0.845002 0.330860 \n",
"22 0.020078 0.568570 0.067835 0.575939 0.421478 0.946298 0.949849 \n",
"23 0.601433 0.284835 0.667852 0.149745 0.001736 0.246749 0.994182 \n",
"24 0.467258 0.709365 0.123957 0.945570 0.834850 0.975976 0.647120 \n",
"25 0.715992 0.508447 0.486200 0.517512 0.322349 0.150000 0.595325 \n",
"26 0.962200 0.523942 0.083645 0.901434 0.306039 0.596029 0.737512 \n",
"27 0.568461 0.443897 0.211743 0.459422 0.358308 0.643205 0.647745 \n",
"28 0.935524 0.204926 0.295505 0.753311 0.285446 0.020390 0.179562 \n",
"29 0.717175 0.026909 0.229667 0.772001 0.186979 0.430898 0.122885 \n",
"30 0.599074 0.581976 0.565395 0.940781 0.056225 0.932920 0.241515 \n",
"31 0.837664 0.813386 0.141612 0.759889 0.926093 0.974489 0.143851 \n",
"32 0.554758 0.419451 0.543710 0.544109 0.658208 0.330085 0.013048 \n",
"33 0.328671 0.616572 0.202418 0.751640 0.135147 0.828703 0.247479 \n",
"34 0.430054 0.682827 0.306024 0.287219 0.254885 0.535979 0.290770 \n",
"35 0.068935 0.953351 0.100823 0.103434 0.625374 0.571393 0.682740 \n",
"36 0.959074 0.897419 0.761285 0.992035 0.692415 0.266561 0.040356 \n",
"37 0.597130 0.624148 0.558344 0.747776 0.065016 0.310713 0.534334 \n",
"38 0.517367 0.962952 0.162887 0.259869 0.163447 0.241599 0.214475 \n",
"39 0.624232 0.424716 0.494462 0.600225 0.159855 0.220448 0.266620 \n",
"40 0.243242 0.372209 0.113441 0.693134 0.920667 0.978526 0.956137 \n",
"41 0.586945 0.213374 0.952542 0.655127 0.059051 0.444055 0.900916 \n",
"42 0.420571 0.140119 0.119936 0.739582 0.997331 0.103235 0.337897 \n",
"43 0.509166 0.698070 0.315861 0.805002 0.575027 0.751401 0.338767 \n",
"44 0.282974 0.774160 0.498251 0.570695 0.714948 0.142679 0.583410 \n",
"45 0.705720 0.961751 0.380580 0.854292 0.016862 0.221851 0.043705 \n",
"46 0.340938 0.914339 0.084733 0.053865 0.410685 0.010644 0.008610 \n",
"47 0.046532 0.514511 0.990109 0.494894 0.162298 0.500364 0.542282 \n",
"48 0.989376 0.123802 0.480965 0.063789 0.029674 0.028277 0.042733 \n",
"49 0.156010 0.459878 0.150516 0.383026 0.521009 0.624012 0.600592 \n",
"50 0.293543 0.271126 0.657192 0.500418 0.870455 0.015288 0.101134 \n",
"51 0.903622 0.162809 0.403062 0.872035 0.191751 0.365048 0.760181 \n",
"52 0.981455 0.422150 0.592627 0.164521 0.946519 0.901641 0.570865 \n",
"53 0.953575 0.922337 0.884806 0.299552 0.679289 0.711889 0.440971 \n",
"54 0.258229 0.073306 0.951804 0.885290 0.788127 0.719723 0.399676 \n",
"55 0.549358 0.710228 0.178180 0.152340 0.528744 0.198425 0.938740 \n",
"56 0.621805 0.524272 0.235312 0.526435 0.657705 0.229933 0.235847 \n",
"57 0.459047 0.150274 0.122675 0.676454 0.190762 0.983444 0.858931 \n",
"58 0.903882 0.576907 0.344177 0.604432 0.490661 0.766432 0.413066 \n",
"59 0.561893 0.597008 0.255584 0.322507 0.879646 0.708222 0.311214 \n",
"60 0.888263 0.005625 0.089216 0.113007 0.220397 0.810721 0.152707 \n",
"61 0.110096 0.251765 0.793428 0.430833 0.861921 0.663657 0.401012 \n",
"62 0.373095 0.674368 0.006626 0.531828 0.103363 0.224212 0.448203 \n",
"63 0.442777 0.000470 0.349322 0.847618 0.216712 0.393309 0.658365 \n",
"64 0.530668 0.376467 0.338522 0.351587 0.392377 0.291380 0.241266 \n",
"65 0.168931 0.914029 0.309646 0.326802 0.068219 0.379085 0.049438 \n",
"66 0.969493 0.084686 0.826482 0.108448 0.569722 0.617112 0.646065 \n",
"67 0.341085 0.556542 0.229091 0.524727 0.367717 0.749818 0.047264 \n",
"68 0.028708 0.463375 0.149176 0.202438 0.763428 0.562348 0.557011 \n",
"69 0.783115 0.800046 0.883843 0.883993 0.228633 0.823703 0.717880 \n",
"70 0.973698 0.726040 0.639923 0.316196 0.494202 0.536626 0.408289 \n",
"71 0.782099 0.685117 0.025872 0.334492 0.373683 0.477641 0.568215 \n",
"72 0.332245 0.609512 0.707263 0.815713 0.793509 0.721522 0.923366 \n",
"73 0.400545 0.762777 0.738563 0.737075 0.336047 0.932191 0.801716 \n",
"74 0.088581 0.170916 0.008525 0.202978 0.271690 0.594154 0.780043 \n",
"75 0.217685 0.332907 0.253683 0.167637 0.712248 0.334669 0.669454 \n",
"76 0.953669 0.936532 0.519399 0.407463 0.124661 0.032237 0.057315 \n",
"77 0.337216 0.119393 0.140407 0.358066 0.403849 0.153271 0.030057 \n",
"78 0.867706 0.960807 0.292504 0.782552 0.923039 0.448507 0.367906 \n",
"79 0.464712 0.638916 0.596911 0.400870 0.389924 0.455020 0.707760 \n",
"80 0.640694 0.652765 0.172012 0.238701 0.435301 0.632372 0.835614 \n",
"81 0.542074 0.470207 0.361913 0.498920 0.595839 0.560050 0.184479 \n",
"82 0.446899 0.956943 0.421512 0.671973 0.493486 0.706159 0.811837 \n",
"83 0.046757 0.093515 0.978705 0.073193 0.087144 0.628222 0.237686 \n",
"84 0.192386 0.232344 0.390192 0.828145 0.793634 0.749096 0.810883 \n",
"85 0.146629 0.975754 0.197536 0.408597 0.193925 0.309173 0.331368 \n",
"86 0.973764 0.768562 0.214984 0.891570 0.052226 0.568626 0.203127 \n",
"87 0.935958 0.112951 0.503738 0.030938 0.020705 0.219586 0.697179 \n",
"88 0.503141 0.291031 0.299887 0.088615 0.826193 0.694264 0.048398 \n",
"89 0.517243 0.151222 0.625420 0.026652 0.179042 0.866507 0.305781 \n",
"90 0.246551 0.410989 0.182548 0.710385 0.525971 0.187429 0.625125 \n",
"91 0.281104 0.208051 0.300065 0.559628 0.080885 0.489182 0.677172 \n",
"92 0.202205 0.222882 0.836638 0.188745 0.526511 0.142976 0.932710 \n",
"93 0.365328 0.067016 0.260479 0.833927 0.174271 0.328066 0.120953 \n",
"94 0.099917 0.972960 0.248563 0.939709 0.278545 0.874784 0.623881 \n",
"95 0.384575 0.808233 0.410293 0.546478 0.363510 0.550752 0.865433 \n",
"96 0.972265 0.855608 0.431820 0.887729 0.095447 0.013635 0.005369 \n",
"97 0.443013 0.070544 0.189925 0.031860 0.706069 0.678759 0.608366 \n",
"98 0.077568 0.949501 0.485272 0.578740 0.499380 0.327019 0.343815 \n",
"99 0.155376 0.957772 0.817545 0.087401 0.692598 0.468097 0.913008 \n",
"\n",
" 7 8 9 10 11 12 13 \\\n",
"0 0.370203 0.119913 0.797300 0.813393 0.217597 0.075991 0.641011 \n",
"1 0.130738 0.202588 0.948425 0.567772 0.198878 0.924895 0.789798 \n",
"2 0.961506 0.333799 0.040235 0.590649 0.948139 0.197314 0.429642 \n",
"3 0.375138 0.708736 0.113676 0.043767 0.769843 0.971443 0.960800 \n",
"4 0.872178 0.256827 0.723024 0.441635 0.960745 0.703610 0.900218 \n",
"5 0.605702 0.257909 0.993247 0.568817 0.683365 0.086623 0.748251 \n",
"6 0.903398 0.922132 0.058366 0.290822 0.726943 0.465682 0.629000 \n",
"7 0.198078 0.626747 0.262134 0.955515 0.983084 0.069840 0.654970 \n",
"8 0.539609 0.108131 0.339062 0.625137 0.645738 0.468916 0.060478 \n",
"9 0.305085 0.816239 0.934662 0.216122 0.823190 0.611720 0.653541 \n",
"10 0.724424 0.315379 0.634437 0.915385 0.469705 0.280737 0.052987 \n",
"11 0.235344 0.660998 0.514938 0.973601 0.131641 0.372902 0.242042 \n",
"12 0.268828 0.316619 0.269507 0.763287 0.632114 0.750555 0.299116 \n",
"13 0.678261 0.631814 0.304550 0.515021 0.081605 0.293476 0.086111 \n",
"14 0.336193 0.573263 0.538365 0.594855 0.433657 0.334472 0.057797 \n",
"15 0.858607 0.555633 0.680493 0.233000 0.518150 0.328573 0.489802 \n",
"16 0.693626 0.111514 0.001077 0.605950 0.866133 0.924439 0.016670 \n",
"17 0.653020 0.573196 0.912633 0.559741 0.047761 0.270766 0.625991 \n",
"18 0.709357 0.497487 0.349076 0.281547 0.989705 0.284879 0.674823 \n",
"19 0.128290 0.900064 0.889617 0.928961 0.314974 0.187434 0.349362 \n",
"20 0.678468 0.161162 0.781723 0.197679 0.366691 0.696398 0.595407 \n",
"21 0.283467 0.664088 0.103456 0.398925 0.498581 0.673513 0.992755 \n",
"22 0.379918 0.503542 0.829583 0.030764 0.795298 0.213898 0.200304 \n",
"23 0.574476 0.958963 0.282599 0.119573 0.394154 0.475698 0.096617 \n",
"24 0.279584 0.534938 0.640714 0.863160 0.414332 0.914883 0.905426 \n",
"25 0.466549 0.681784 0.510865 0.341896 0.642011 0.194003 0.176136 \n",
"26 0.213862 0.160708 0.771491 0.403530 0.728881 0.885451 0.334911 \n",
"27 0.245107 0.089982 0.924144 0.352291 0.400914 0.601927 0.475980 \n",
"28 0.049065 0.507503 0.091044 0.333323 0.675467 0.102059 0.041811 \n",
"29 0.772687 0.540777 0.708760 0.661636 0.593298 0.212051 0.423400 \n",
"30 0.588169 0.346667 0.610860 0.801080 0.952361 0.502563 0.928013 \n",
"31 0.584297 0.545308 0.345272 0.135385 0.382212 0.352726 0.100584 \n",
"32 0.644429 0.923094 0.077120 0.918075 0.973780 0.365385 0.428036 \n",
"33 0.963246 0.027938 0.910738 0.425265 0.953610 0.737054 0.162719 \n",
"34 0.572601 0.195610 0.007694 0.692215 0.054614 0.248207 0.875781 \n",
"35 0.351674 0.198406 0.091559 0.261832 0.690165 0.056777 0.738249 \n",
"36 0.807738 0.572842 0.879641 0.544679 0.513676 0.956565 0.397484 \n",
"37 0.189690 0.019022 0.918994 0.233356 0.840770 0.820874 0.359727 \n",
"38 0.783970 0.485379 0.057690 0.711698 0.512955 0.303263 0.341097 \n",
"39 0.711248 0.551588 0.555332 0.389574 0.035762 0.748139 0.111814 \n",
"40 0.073748 0.947695 0.054574 0.683155 0.166160 0.695241 0.642180 \n",
"41 0.255090 0.607603 0.718444 0.176303 0.759999 0.065631 0.986448 \n",
"42 0.928101 0.207018 0.595981 0.364307 0.820500 0.175522 0.466659 \n",
"43 0.394329 0.130693 0.808118 0.036354 0.214976 0.762949 0.170085 \n",
"44 0.613272 0.271541 0.996745 0.301616 0.913021 0.296811 0.139409 \n",
"45 0.766565 0.121875 0.183591 0.492443 0.245181 0.695867 0.412479 \n",
"46 0.304427 0.990845 0.323871 0.045816 0.280553 0.811784 0.920272 \n",
"47 0.360552 0.536921 0.003268 0.418236 0.236739 0.189870 0.797396 \n",
"48 0.626647 0.835509 0.579123 0.860774 0.576712 0.595198 0.686706 \n",
"49 0.207030 0.422199 0.201312 0.093853 0.189420 0.747356 0.484339 \n",
"50 0.486161 0.690941 0.754261 0.360024 0.133827 0.217685 0.890911 \n",
"51 0.005005 0.234919 0.023112 0.644316 0.234862 0.636849 0.570068 \n",
"52 0.336033 0.666465 0.203108 0.836698 0.618370 0.311864 0.658274 \n",
"53 0.073767 0.381541 0.685877 0.389958 0.786228 0.037824 0.399811 \n",
"54 0.687057 0.699859 0.176459 0.296652 0.573588 0.557119 0.018452 \n",
"55 0.160028 0.150605 0.071756 0.055665 0.519298 0.864991 0.957702 \n",
"56 0.282753 0.834884 0.122854 0.848491 0.741738 0.494087 0.306413 \n",
"57 0.374379 0.785685 0.895374 0.422959 0.944429 0.817486 0.365144 \n",
"58 0.127637 0.457778 0.898217 0.198500 0.101609 0.755922 0.126097 \n",
"59 0.054658 0.306404 0.352801 0.207221 0.131020 0.894150 0.736893 \n",
"60 0.338453 0.377245 0.089314 0.840349 0.418788 0.287238 0.356639 \n",
"61 0.057624 0.617171 0.585709 0.952863 0.089109 0.396258 0.514058 \n",
"62 0.691698 0.372925 0.262914 0.024516 0.122373 0.311720 0.382394 \n",
"63 0.232768 0.788810 0.511310 0.295138 0.542790 0.636588 0.779574 \n",
"64 0.430250 0.804930 0.326878 0.867327 0.496549 0.543669 0.930088 \n",
"65 0.594426 0.162537 0.163292 0.396039 0.313997 0.151314 0.231237 \n",
"66 0.161539 0.730931 0.940965 0.950832 0.538184 0.872905 0.207183 \n",
"67 0.952503 0.244925 0.748086 0.975804 0.242086 0.415957 0.271573 \n",
"68 0.840089 0.418843 0.050686 0.908020 0.904373 0.764753 0.996586 \n",
"69 0.897609 0.404378 0.021706 0.618371 0.906555 0.406228 0.399742 \n",
"70 0.227556 0.454884 0.737726 0.518611 0.341362 0.055167 0.162260 \n",
"71 0.779146 0.071995 0.785226 0.712795 0.380059 0.100539 0.806584 \n",
"72 0.041724 0.165307 0.691348 0.316237 0.799991 0.955482 0.325381 \n",
"73 0.287510 0.552654 0.702003 0.538719 0.964124 0.193855 0.286752 \n",
"74 0.810323 0.807003 0.638173 0.946288 0.330072 0.687379 0.245010 \n",
"75 0.566433 0.551753 0.949788 0.199111 0.186971 0.925138 0.429849 \n",
"76 0.324400 0.918338 0.078754 0.870815 0.038274 0.458141 0.490392 \n",
"77 0.693285 0.950651 0.297738 0.459632 0.627602 0.563293 0.052328 \n",
"78 0.668406 0.213995 0.596635 0.711361 0.473227 0.624156 0.164661 \n",
"79 0.285201 0.285224 0.786104 0.561744 0.714790 0.159662 0.783853 \n",
"80 0.340019 0.624258 0.596465 0.618562 0.715032 0.009530 0.329951 \n",
"81 0.104579 0.068542 0.012931 0.875295 0.687544 0.616432 0.750181 \n",
"82 0.988642 0.653512 0.658120 0.012855 0.744878 0.350415 0.984497 \n",
"83 0.202346 0.455385 0.453386 0.558833 0.899820 0.129453 0.230235 \n",
"84 0.700307 0.307748 0.483095 0.057844 0.016603 0.318474 0.959070 \n",
"85 0.296980 0.382561 0.957489 0.254395 0.250440 0.426225 0.106639 \n",
"86 0.906710 0.827621 0.994204 0.969008 0.418948 0.342615 0.251654 \n",
"87 0.523962 0.738986 0.306575 0.208350 0.518736 0.252732 0.317812 \n",
"88 0.205266 0.579757 0.298720 0.176049 0.370353 0.885604 0.455893 \n",
"89 0.379515 0.752613 0.880888 0.728655 0.198675 0.563817 0.331599 \n",
"90 0.573944 0.898057 0.295871 0.455465 0.799077 0.824962 0.309985 \n",
"91 0.078778 0.074930 0.610005 0.136230 0.293313 0.748696 0.483137 \n",
"92 0.477066 0.559919 0.061231 0.276869 0.089255 0.749884 0.223453 \n",
"93 0.986426 0.373958 0.954289 0.684058 0.496419 0.849028 0.033297 \n",
"94 0.254895 0.699770 0.280449 0.799373 0.376013 0.668393 0.447490 \n",
"95 0.263930 0.089405 0.020224 0.448728 0.379692 0.123062 0.843833 \n",
"96 0.053794 0.947760 0.156041 0.533009 0.126280 0.846932 0.698638 \n",
"97 0.090716 0.644679 0.498870 0.768818 0.385197 0.477038 0.331151 \n",
"98 0.874237 0.294809 0.293207 0.972275 0.666216 0.361570 0.410536 \n",
"99 0.567578 0.247393 0.620830 0.199235 0.989452 0.160533 0.269349 \n",
"\n",
" 14 15 16 17 18 19 20 \\\n",
"0 0.152553 0.398929 0.412747 0.495972 0.426923 0.057331 0.907335 \n",
"1 0.067976 0.226943 0.250648 0.110083 0.086327 0.985833 0.469663 \n",
"2 0.052509 0.685962 0.018500 0.424301 0.038459 0.436108 0.597363 \n",
"3 0.183116 0.550305 0.300616 0.936178 0.384496 0.670216 0.916064 \n",
"4 0.129143 0.691840 0.529385 0.225385 0.314935 0.663522 0.416517 \n",
"5 0.145187 0.956925 0.709713 0.978972 0.391186 0.778853 0.644358 \n",
"6 0.333665 0.270113 0.515332 0.977382 0.611564 0.913686 0.296590 \n",
"7 0.257981 0.936330 0.294464 0.037339 0.527534 0.702398 0.119693 \n",
"8 0.562937 0.133318 0.167932 0.508497 0.180976 0.754520 0.761375 \n",
"9 0.423822 0.887000 0.039315 0.677546 0.431833 0.409528 0.884798 \n",
"10 0.457430 0.169607 0.321497 0.652358 0.300634 0.903797 0.515073 \n",
"11 0.620540 0.347847 0.079931 0.212704 0.538853 0.432121 0.069997 \n",
"12 0.748178 0.319981 0.581872 0.239044 0.094453 0.584066 0.210230 \n",
"13 0.211582 0.804969 0.404649 0.643264 0.916444 0.228347 0.446108 \n",
"14 0.948607 0.967295 0.151642 0.350897 0.951102 0.960497 0.080081 \n",
"15 0.726806 0.005590 0.737815 0.591044 0.276552 0.876043 0.899343 \n",
"16 0.038890 0.330194 0.905049 0.053323 0.379276 0.477070 0.885285 \n",
"17 0.764665 0.988811 0.870873 0.817841 0.266430 0.901922 0.272297 \n",
"18 0.661377 0.626745 0.342837 0.174544 0.699321 0.737172 0.531518 \n",
"19 0.625388 0.224359 0.828881 0.365829 0.371148 0.535126 0.696872 \n",
"20 0.228014 0.659368 0.070010 0.199005 0.495725 0.475817 0.752258 \n",
"21 0.897678 0.076425 0.277140 0.804702 0.623825 0.325423 0.003088 \n",
"22 0.351145 0.900516 0.189523 0.664209 0.129083 0.935204 0.947282 \n",
"23 0.750427 0.314251 0.918600 0.244872 0.887766 0.844412 0.496408 \n",
"24 0.669827 0.740110 0.046268 0.257567 0.412065 0.971992 0.059296 \n",
"25 0.678555 0.895494 0.693578 0.269054 0.002012 0.768728 0.678023 \n",
"26 0.957275 0.406542 0.104049 0.846459 0.121404 0.678292 0.253461 \n",
"27 0.583649 0.538165 0.693437 0.562741 0.957271 0.017563 0.509851 \n",
"28 0.391393 0.194722 0.513964 0.454184 0.607115 0.154261 0.421348 \n",
"29 0.836189 0.208818 0.123221 0.589420 0.740686 0.388635 0.771973 \n",
"30 0.235149 0.909307 0.110822 0.191069 0.648090 0.193660 0.614083 \n",
"31 0.411745 0.321778 0.841084 0.177530 0.566323 0.690729 0.690565 \n",
"32 0.876110 0.446492 0.452866 0.604891 0.379622 0.881405 0.106689 \n",
"33 0.109166 0.203975 0.491198 0.494556 0.294155 0.093356 0.886009 \n",
"34 0.662057 0.570455 0.914122 0.748697 0.371530 0.799924 0.136684 \n",
"35 0.860423 0.637600 0.814031 0.377364 0.090392 0.924764 0.255793 \n",
"36 0.592211 0.570091 0.420031 0.044040 0.511031 0.357037 0.251677 \n",
"37 0.204347 0.354155 0.910890 0.107344 0.078744 0.390031 0.862202 \n",
"38 0.651795 0.079569 0.529197 0.683429 0.826175 0.238200 0.808394 \n",
"39 0.286402 0.282645 0.042980 0.109347 0.863596 0.746091 0.205647 \n",
"40 0.618130 0.306592 0.098641 0.648512 0.418518 0.220290 0.464926 \n",
"41 0.928723 0.325276 0.039831 0.452483 0.270144 0.142076 0.691465 \n",
"42 0.137356 0.853624 0.075736 0.647529 0.223741 0.683086 0.627155 \n",
"43 0.017075 0.859210 0.130977 0.701242 0.586054 0.946480 0.734424 \n",
"44 0.593337 0.284343 0.488794 0.453034 0.561590 0.488589 0.526806 \n",
"45 0.763473 0.364036 0.933494 0.988541 0.852133 0.781288 0.072685 \n",
"46 0.261799 0.676882 0.180754 0.940633 0.436200 0.389245 0.484100 \n",
"47 0.830240 0.768234 0.333011 0.708766 0.305381 0.089423 0.308147 \n",
"48 0.766777 0.677700 0.602408 0.539586 0.371917 0.107216 0.483100 \n",
"49 0.086878 0.207687 0.752801 0.360902 0.983270 0.095683 0.214867 \n",
"50 0.805264 0.761686 0.482925 0.873497 0.790204 0.691919 0.113317 \n",
"51 0.533310 0.638862 0.982652 0.370607 0.904483 0.732998 0.423471 \n",
"52 0.270383 0.227260 0.739582 0.009175 0.285989 0.521315 0.759934 \n",
"53 0.662579 0.424186 0.303661 0.254112 0.583194 0.846797 0.531135 \n",
"54 0.185157 0.349415 0.163049 0.317488 0.366420 0.560923 0.721519 \n",
"55 0.382958 0.599153 0.451381 0.784357 0.623244 0.135769 0.289674 \n",
"56 0.894412 0.190550 0.910316 0.311451 0.824721 0.504628 0.369316 \n",
"57 0.712443 0.580169 0.582657 0.023031 0.974471 0.886274 0.896820 \n",
"58 0.594624 0.449357 0.652551 0.487731 0.739320 0.751277 0.668256 \n",
"59 0.036322 0.829056 0.001874 0.766904 0.107745 0.181201 0.209287 \n",
"60 0.732129 0.021448 0.574784 0.121079 0.446276 0.849435 0.041734 \n",
"61 0.024191 0.328654 0.717438 0.022365 0.142573 0.205886 0.647488 \n",
"62 0.409725 0.729299 0.268347 0.229804 0.150551 0.426595 0.240304 \n",
"63 0.959593 0.778705 0.365191 0.398598 0.250133 0.669720 0.068832 \n",
"64 0.194347 0.209162 0.603991 0.073787 0.435740 0.968915 0.047523 \n",
"65 0.834722 0.939717 0.469184 0.578252 0.123564 0.656203 0.212590 \n",
"66 0.586554 0.185640 0.461027 0.602014 0.724557 0.886336 0.099279 \n",
"67 0.316028 0.614613 0.303237 0.163130 0.196834 0.906492 0.262982 \n",
"68 0.182455 0.033250 0.859588 0.085220 0.675355 0.925079 0.549517 \n",
"69 0.042835 0.912831 0.395944 0.271927 0.628504 0.174363 0.798152 \n",
"70 0.971913 0.742634 0.569280 0.963495 0.526262 0.463755 0.176424 \n",
"71 0.856195 0.190467 0.524509 0.923388 0.885587 0.142400 0.068274 \n",
"72 0.224191 0.224140 0.039197 0.796239 0.691752 0.270912 0.223103 \n",
"73 0.956875 0.172407 0.469483 0.587602 0.216050 0.197944 0.753592 \n",
"74 0.652627 0.583266 0.926175 0.699227 0.390555 0.707715 0.197371 \n",
"75 0.100118 0.245210 0.005838 0.328856 0.472778 0.702947 0.784864 \n",
"76 0.061840 0.601993 0.581063 0.678933 0.394721 0.203167 0.703948 \n",
"77 0.717753 0.526154 0.658606 0.066890 0.042696 0.201334 0.641133 \n",
"78 0.355097 0.635242 0.469168 0.312519 0.792453 0.711826 0.825279 \n",
"79 0.728461 0.403996 0.030646 0.388762 0.716370 0.089414 0.191447 \n",
"80 0.113655 0.253422 0.819658 0.760127 0.049612 0.748235 0.276491 \n",
"81 0.841943 0.982929 0.770140 0.048483 0.005412 0.017292 0.391493 \n",
"82 0.553889 0.072274 0.230562 0.985526 0.341784 0.341256 0.926718 \n",
"83 0.912613 0.725789 0.191705 0.521836 0.169267 0.234400 0.697058 \n",
"84 0.769295 0.794240 0.365978 0.875939 0.688364 0.340601 0.749707 \n",
"85 0.094297 0.579362 0.300533 0.416860 0.526611 0.493474 0.446917 \n",
"86 0.266212 0.682123 0.546489 0.005642 0.380782 0.024447 0.710405 \n",
"87 0.372713 0.995537 0.917949 0.928822 0.622103 0.868068 0.078160 \n",
"88 0.692277 0.977451 0.977567 0.323352 0.270029 0.999281 0.202091 \n",
"89 0.793669 0.274265 0.664210 0.418347 0.784137 0.472254 0.837649 \n",
"90 0.284436 0.679448 0.677339 0.031058 0.342612 0.712220 0.800766 \n",
"91 0.161082 0.733307 0.835505 0.110934 0.448179 0.367703 0.844146 \n",
"92 0.330966 0.752482 0.111778 0.233322 0.225039 0.814970 0.669704 \n",
"93 0.051117 0.394829 0.084870 0.705926 0.105378 0.424805 0.736945 \n",
"94 0.209683 0.979850 0.571784 0.225737 0.029467 0.791515 0.952270 \n",
"95 0.535687 0.553492 0.743439 0.897055 0.903819 0.460931 0.634256 \n",
"96 0.208158 0.502204 0.804167 0.663162 0.272953 0.839197 0.914726 \n",
"97 0.850054 0.689241 0.025337 0.080979 0.775769 0.041505 0.685892 \n",
"98 0.710539 0.504775 0.434745 0.502746 0.228916 0.516033 0.765215 \n",
"99 0.634714 0.709957 0.637265 0.871948 0.866360 0.175904 0.392456 \n",
"\n",
" 21 22 23 24 25 26 27 \\\n",
"0 0.242210 0.860111 0.764627 0.243772 0.744785 0.944923 0.991802 \n",
"1 0.990004 0.864332 0.768623 0.451735 0.677281 0.016003 0.733019 \n",
"2 0.163290 0.551183 0.110727 0.180119 0.188264 0.309836 0.129119 \n",
"3 0.663030 0.230242 0.624192 0.407815 0.740665 0.504651 0.021896 \n",
"4 0.845554 0.001661 0.000941 0.205084 0.327311 0.065750 0.462068 \n",
"5 0.615774 0.038427 0.241094 0.911206 0.918750 0.052265 0.402419 \n",
"6 0.209712 0.834807 0.673749 0.387952 0.185758 0.149772 0.865447 \n",
"7 0.466901 0.070817 0.526581 0.108649 0.444628 0.918643 0.218161 \n",
"8 0.060383 0.781094 0.384702 0.367787 0.543003 0.618757 0.459120 \n",
"9 0.728613 0.370678 0.977302 0.581606 0.125268 0.196706 0.388035 \n",
"10 0.028171 0.425426 0.603490 0.716513 0.123498 0.222629 0.910237 \n",
"11 0.866002 0.541957 0.327762 0.050988 0.585496 0.310973 0.004999 \n",
"12 0.043657 0.724076 0.428575 0.180019 0.877576 0.083257 0.458346 \n",
"13 0.381073 0.761629 0.722589 0.741040 0.835229 0.258541 0.287785 \n",
"14 0.098757 0.185077 0.511918 0.237707 0.142528 0.891438 0.806999 \n",
"15 0.489191 0.008964 0.488479 0.807909 0.878133 0.257454 0.574865 \n",
"16 0.294306 0.728870 0.036288 0.117258 0.162836 0.096697 0.697209 \n",
"17 0.342966 0.630057 0.116416 0.927370 0.891600 0.123707 0.087093 \n",
"18 0.309345 0.382286 0.259682 0.162219 0.137275 0.122808 0.194412 \n",
"19 0.307474 0.360111 0.777404 0.527858 0.658311 0.874442 0.317369 \n",
"20 0.113858 0.779835 0.790192 0.248075 0.967884 0.393130 0.473883 \n",
"21 0.473770 0.380403 0.539762 0.264476 0.650952 0.718906 0.097410 \n",
"22 0.891038 0.770340 0.179773 0.104121 0.741933 0.025690 0.477218 \n",
"23 0.576494 0.445171 0.758714 0.944654 0.532030 0.137241 0.087748 \n",
"24 0.474689 0.667531 0.616685 0.424421 0.184510 0.404427 0.126029 \n",
"25 0.463972 0.534715 0.720319 0.918027 0.405074 0.052709 0.751659 \n",
"26 0.751406 0.164445 0.470135 0.754815 0.811779 0.244966 0.035292 \n",
"27 0.971199 0.313072 0.870392 0.409245 0.166389 0.470059 0.333368 \n",
"28 0.916496 0.613131 0.600833 0.029396 0.149743 0.751259 0.351360 \n",
"29 0.001448 0.759421 0.889395 0.714099 0.609490 0.195200 0.239485 \n",
"30 0.692971 0.239337 0.502809 0.906174 0.844201 0.501841 0.109495 \n",
"31 0.988513 0.948981 0.681599 0.664379 0.409103 0.494528 0.319356 \n",
"32 0.897957 0.335940 0.456464 0.773685 0.863320 0.278794 0.621384 \n",
"33 0.613690 0.382977 0.804052 0.913710 0.316802 0.817641 0.047581 \n",
"34 0.384212 0.987660 0.260141 0.253554 0.134256 0.403624 0.772729 \n",
"35 0.789511 0.296198 0.330190 0.921916 0.137425 0.097964 0.976958 \n",
"36 0.566612 0.226526 0.658419 0.423045 0.871050 0.094107 0.101532 \n",
"37 0.934260 0.686790 0.557980 0.427497 0.015030 0.389670 0.807917 \n",
"38 0.530980 0.513132 0.337517 0.510115 0.309539 0.031413 0.248283 \n",
"39 0.365282 0.082429 0.274524 0.661511 0.193382 0.771945 0.005463 \n",
"40 0.048291 0.408438 0.145209 0.583449 0.916306 0.906106 0.275851 \n",
"41 0.900770 0.312392 0.866208 0.485988 0.957880 0.074566 0.535153 \n",
"42 0.920480 0.390963 0.918174 0.957856 0.957133 0.549880 0.165199 \n",
"43 0.087070 0.916793 0.603983 0.806833 0.866316 0.550282 0.791297 \n",
"44 0.356344 0.633075 0.376531 0.104057 0.547391 0.681421 0.600035 \n",
"45 0.356654 0.571731 0.685233 0.282982 0.520551 0.612957 0.234516 \n",
"46 0.373068 0.034519 0.635554 0.222746 0.628988 0.065618 0.833896 \n",
"47 0.862552 0.735222 0.931428 0.622175 0.100053 0.604539 0.780060 \n",
"48 0.851476 0.651523 0.602201 0.590090 0.421486 0.304977 0.977240 \n",
"49 0.171013 0.144147 0.711307 0.664805 0.823824 0.535989 0.187624 \n",
"50 0.901630 0.205642 0.347238 0.850324 0.432353 0.222060 0.298383 \n",
"51 0.900475 0.003570 0.246337 0.819377 0.401650 0.115449 0.308261 \n",
"52 0.801289 0.650290 0.824796 0.504638 0.304650 0.925207 0.393955 \n",
"53 0.838616 0.170024 0.300355 0.381237 0.997520 0.247993 0.954518 \n",
"54 0.520232 0.380921 0.106550 0.952323 0.101439 0.329474 0.361227 \n",
"55 0.074639 0.548266 0.208628 0.476588 0.636338 0.104437 0.422542 \n",
"56 0.730550 0.242383 0.692589 0.589590 0.383386 0.480540 0.741165 \n",
"57 0.829163 0.417331 0.881706 0.582530 0.218453 0.787999 0.522737 \n",
"58 0.069956 0.298945 0.557159 0.755293 0.152569 0.764885 0.146185 \n",
"59 0.704393 0.466890 0.771573 0.657276 0.762535 0.415738 0.802490 \n",
"60 0.880450 0.683843 0.723314 0.665375 0.994892 0.808250 0.591550 \n",
"61 0.524721 0.193966 0.623070 0.079615 0.835274 0.758916 0.644262 \n",
"62 0.911477 0.609629 0.114163 0.633115 0.941467 0.556431 0.597430 \n",
"63 0.150054 0.699938 0.367287 0.580641 0.191205 0.107215 0.032595 \n",
"64 0.044949 0.055982 0.464782 0.185307 0.689003 0.236008 0.771977 \n",
"65 0.820115 0.052182 0.267062 0.124191 0.430600 0.446272 0.779073 \n",
"66 0.952010 0.361844 0.746798 0.248278 0.097081 0.499007 0.015886 \n",
"67 0.386960 0.382168 0.086392 0.141270 0.282643 0.396020 0.178328 \n",
"68 0.117069 0.183175 0.530703 0.509579 0.672034 0.319676 0.782981 \n",
"69 0.944091 0.485462 0.305534 0.195840 0.373059 0.815720 0.145745 \n",
"70 0.281526 0.021693 0.213761 0.219988 0.435527 0.449357 0.759042 \n",
"71 0.551541 0.324617 0.048629 0.105459 0.427634 0.178608 0.079104 \n",
"72 0.428264 0.739740 0.750224 0.090991 0.510390 0.078146 0.073564 \n",
"73 0.442888 0.699712 0.656769 0.882594 0.381329 0.846669 0.301897 \n",
"74 0.183450 0.728087 0.412985 0.012570 0.935167 0.037356 0.693228 \n",
"75 0.907587 0.498185 0.672659 0.678085 0.240770 0.309763 0.555630 \n",
"76 0.884715 0.743305 0.092940 0.462505 0.221352 0.237253 0.876668 \n",
"77 0.300364 0.835279 0.337558 0.372496 0.087397 0.926316 0.437987 \n",
"78 0.790778 0.262842 0.774944 0.323007 0.590386 0.458286 0.118084 \n",
"79 0.419190 0.367281 0.378881 0.462889 0.850073 0.114963 0.423717 \n",
"80 0.079133 0.597637 0.976567 0.862701 0.753617 0.715103 0.418215 \n",
"81 0.420823 0.891302 0.597312 0.489133 0.672835 0.979283 0.423083 \n",
"82 0.374552 0.815879 0.087653 0.062792 0.441571 0.381581 0.653622 \n",
"83 0.400330 0.517042 0.010785 0.180624 0.371430 0.392193 0.581574 \n",
"84 0.855207 0.437958 0.202583 0.586047 0.223368 0.178667 0.094266 \n",
"85 0.702993 0.202714 0.800684 0.581990 0.832557 0.681088 0.529595 \n",
"86 0.963374 0.002851 0.278126 0.303319 0.382781 0.228294 0.117718 \n",
"87 0.428651 0.148882 0.194853 0.329601 0.455193 0.134463 0.739601 \n",
"88 0.066818 0.137034 0.248964 0.490571 0.553426 0.839173 0.139945 \n",
"89 0.714594 0.127457 0.151064 0.844610 0.281106 0.308681 0.831363 \n",
"90 0.775104 0.766749 0.391896 0.954093 0.741952 0.735355 0.970587 \n",
"91 0.490336 0.689666 0.900623 0.278627 0.491377 0.713210 0.246250 \n",
"92 0.784607 0.980003 0.074185 0.503369 0.614454 0.129876 0.074444 \n",
"93 0.384884 0.627406 0.101251 0.897678 0.566562 0.951890 0.490194 \n",
"94 0.556615 0.639764 0.161342 0.669579 0.122120 0.385166 0.969815 \n",
"95 0.488520 0.682969 0.964561 0.899604 0.378423 0.644292 0.677258 \n",
"96 0.640468 0.527957 0.277913 0.429337 0.589427 0.609376 0.701999 \n",
"97 0.890387 0.888898 0.443587 0.018628 0.549022 0.642324 0.479254 \n",
"98 0.099779 0.944932 0.646978 0.565845 0.961522 0.042999 0.745851 \n",
"99 0.260810 0.912724 0.179538 0.363543 0.810410 0.292306 0.195655 \n",
"\n",
" 28 29 \n",
"0 0.775039 0.412386 \n",
"1 0.439045 0.404881 \n",
"2 0.233958 0.301704 \n",
"3 0.235594 0.978403 \n",
"4 0.800227 0.652551 \n",
"5 0.607283 0.789062 \n",
"6 0.864838 0.734848 \n",
"7 0.628602 0.562219 \n",
"8 0.752381 0.280349 \n",
"9 0.942682 0.059056 \n",
"10 0.086722 0.716075 \n",
"11 0.820443 0.345355 \n",
"12 0.053451 0.315931 \n",
"13 0.146448 0.003330 \n",
"14 0.323360 0.913913 \n",
"15 0.336875 0.647768 \n",
"16 0.354697 0.083038 \n",
"17 0.574580 0.721992 \n",
"18 0.087458 0.385799 \n",
"19 0.936701 0.993278 \n",
"20 0.672919 0.256158 \n",
"21 0.047993 0.879046 \n",
"22 0.080934 0.912208 \n",
"23 0.372629 0.617857 \n",
"24 0.981709 0.962642 \n",
"25 0.790349 0.240731 \n",
"26 0.059534 0.939546 \n",
"27 0.827256 0.856752 \n",
"28 0.417076 0.902869 \n",
"29 0.604957 0.709172 \n",
"30 0.861290 0.055246 \n",
"31 0.328964 0.072510 \n",
"32 0.132359 0.765531 \n",
"33 0.132360 0.941529 \n",
"34 0.751016 0.953293 \n",
"35 0.140189 0.181310 \n",
"36 0.567580 0.283756 \n",
"37 0.634687 0.631037 \n",
"38 0.142824 0.487245 \n",
"39 0.984529 0.976142 \n",
"40 0.002957 0.525038 \n",
"41 0.421275 0.273299 \n",
"42 0.593712 0.517212 \n",
"43 0.272787 0.461349 \n",
"44 0.244555 0.876272 \n",
"45 0.860184 0.896478 \n",
"46 0.662683 0.816639 \n",
"47 0.962411 0.588523 \n",
"48 0.514393 0.048044 \n",
"49 0.217189 0.570282 \n",
"50 0.664775 0.958049 \n",
"51 0.612941 0.870673 \n",
"52 0.199614 0.361320 \n",
"53 0.220393 0.734893 \n",
"54 0.659153 0.464153 \n",
"55 0.098107 0.554296 \n",
"56 0.831809 0.777391 \n",
"57 0.469207 0.630730 \n",
"58 0.886109 0.499044 \n",
"59 0.518260 0.679503 \n",
"60 0.027459 0.750605 \n",
"61 0.800594 0.906065 \n",
"62 0.269005 0.758348 \n",
"63 0.379773 0.619523 \n",
"64 0.751289 0.392166 \n",
"65 0.790516 0.533594 \n",
"66 0.489082 0.985338 \n",
"67 0.856421 0.458342 \n",
"68 0.014328 0.609038 \n",
"69 0.860231 0.946066 \n",
"70 0.059454 0.882776 \n",
"71 0.338519 0.832808 \n",
"72 0.568727 0.106031 \n",
"73 0.016270 0.811660 \n",
"74 0.191860 0.630727 \n",
"75 0.948622 0.561589 \n",
"76 0.164604 0.362618 \n",
"77 0.844932 0.575924 \n",
"78 0.823297 0.871790 \n",
"79 0.210187 0.802821 \n",
"80 0.168063 0.244866 \n",
"81 0.450852 0.491330 \n",
"82 0.638020 0.639932 \n",
"83 0.664830 0.846698 \n",
"84 0.676757 0.813497 \n",
"85 0.711596 0.172003 \n",
"86 0.958912 0.984522 \n",
"87 0.143992 0.522306 \n",
"88 0.849452 0.852110 \n",
"89 0.940927 0.396301 \n",
"90 0.673959 0.839634 \n",
"91 0.472259 0.313519 \n",
"92 0.035547 0.263580 \n",
"93 0.781995 0.407303 \n",
"94 0.061409 0.089618 \n",
"95 0.353208 0.098977 \n",
"96 0.274253 0.105528 \n",
"97 0.050797 0.228636 \n",
"98 0.070118 0.014579 \n",
"99 0.623025 0.853659 "
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.set_option('display.max_columns', None)\n",
"pd.set_option('display.max_rows', None)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "6faedb40-6622-4a88-aeac-b6535d29cca6",
"metadata": {},
"outputs": [],
"source": [
"pd.set_option('display.max_columns', 10)\n",
"pd.set_option('display.max_rows', 10)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "d03f5e44-3994-44c8-8393-40297f8289b4",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" GOOG | \n",
" AAPL | \n",
" AMZN | \n",
" FB | \n",
" NFLX | \n",
" MSFT | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 105.000000 | \n",
" 105.000000 | \n",
" 105.000000 | \n",
" 105.000000 | \n",
" 105.000000 | \n",
" 105.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 1.046206 | \n",
" 1.138536 | \n",
" 1.393822 | \n",
" 0.945121 | \n",
" 1.540559 | \n",
" 1.318059 | \n",
"
\n",
" \n",
" std | \n",
" 0.077776 | \n",
" 0.182109 | \n",
" 0.140796 | \n",
" 0.103350 | \n",
" 0.200508 | \n",
" 0.220662 | \n",
"
\n",
" \n",
" min | \n",
" 0.888689 | \n",
" 0.847200 | \n",
" 1.000000 | \n",
" 0.668718 | \n",
" 1.000000 | \n",
" 0.988547 | \n",
"
\n",
" \n",
" 25% | \n",
" 0.992924 | \n",
" 1.000400 | \n",
" 1.304091 | \n",
" 0.879529 | \n",
" 1.398876 | \n",
" 1.142873 | \n",
"
\n",
" \n",
" 50% | \n",
" 1.036372 | \n",
" 1.095429 | \n",
" 1.420278 | \n",
" 0.959968 | \n",
" 1.560884 | \n",
" 1.242431 | \n",
"
\n",
" \n",
" 75% | \n",
" 1.095189 | \n",
" 1.236000 | \n",
" 1.491702 | \n",
" 1.016858 | \n",
" 1.701605 | \n",
" 1.543599 | \n",
"
\n",
" \n",
" max | \n",
" 1.226504 | \n",
" 1.678000 | \n",
" 1.637494 | \n",
" 1.123575 | \n",
" 1.957665 | \n",
" 1.802472 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" GOOG AAPL AMZN FB NFLX MSFT\n",
"count 105.000000 105.000000 105.000000 105.000000 105.000000 105.000000\n",
"mean 1.046206 1.138536 1.393822 0.945121 1.540559 1.318059\n",
"std 0.077776 0.182109 0.140796 0.103350 0.200508 0.220662\n",
"min 0.888689 0.847200 1.000000 0.668718 1.000000 0.988547\n",
"25% 0.992924 1.000400 1.304091 0.879529 1.398876 1.142873\n",
"50% 1.036372 1.095429 1.420278 0.959968 1.560884 1.242431\n",
"75% 1.095189 1.236000 1.491702 1.016858 1.701605 1.543599\n",
"max 1.226504 1.678000 1.637494 1.123575 1.957665 1.802472"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv(os.path.join('files','stocks.csv'))\n",
"df.describe()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "602715a0-e57d-4dc0-b1a2-733f9b90c3ae",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 Canada\n",
"1 Germany\n",
"2 France\n",
"3 Germany\n",
"4 Mexico\n",
" ... \n",
"695 France\n",
"696 Mexico\n",
"697 Mexico\n",
"698 Canada\n",
"699 United States of America\n",
"Name: Country, Length: 700, dtype: object"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_excel(os.path.join('files','Sample.xlsx'))\n",
"df.Country"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "821f2a23-63ef-491e-a16a-8c4d7aa1cbbc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 1618.5\n",
"1 1321.0\n",
"2 2178.0\n",
"3 888.0\n",
"4 2470.0\n",
" ... \n",
"695 2475.0\n",
"696 546.0\n",
"697 1368.0\n",
"698 723.0\n",
"699 1806.0\n",
"Name: Units Sold, Length: 700, dtype: float64"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['Units Sold']"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "1608f861-912a-4d4a-8c02-e89df2769454",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Segment | \n",
" Country | \n",
" Product | \n",
" Discount Band | \n",
" Units Sold | \n",
" ... | \n",
" Profit | \n",
" Date | \n",
" Month Number | \n",
" Month Name | \n",
" Year | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Government | \n",
" Canada | \n",
" Carretera | \n",
" None | \n",
" 1618.5 | \n",
" ... | \n",
" 16185.0 | \n",
" 2014-01-01 | \n",
" 1 | \n",
" January | \n",
" 2014 | \n",
"
\n",
" \n",
" 1 | \n",
" Government | \n",
" Germany | \n",
" Carretera | \n",
" None | \n",
" 1321.0 | \n",
" ... | \n",
" 13210.0 | \n",
" 2014-01-01 | \n",
" 1 | \n",
" January | \n",
" 2014 | \n",
"
\n",
" \n",
" 2 | \n",
" Midmarket | \n",
" France | \n",
" Carretera | \n",
" None | \n",
" 2178.0 | \n",
" ... | \n",
" 10890.0 | \n",
" 2014-06-01 | \n",
" 6 | \n",
" June | \n",
" 2014 | \n",
"
\n",
" \n",
" 3 | \n",
" Midmarket | \n",
" Germany | \n",
" Carretera | \n",
" None | \n",
" 888.0 | \n",
" ... | \n",
" 4440.0 | \n",
" 2014-06-01 | \n",
" 6 | \n",
" June | \n",
" 2014 | \n",
"
\n",
" \n",
" 4 | \n",
" Midmarket | \n",
" Mexico | \n",
" Carretera | \n",
" None | \n",
" 2470.0 | \n",
" ... | \n",
" 12350.0 | \n",
" 2014-06-01 | \n",
" 6 | \n",
" June | \n",
" 2014 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 16 columns
\n",
"
"
],
"text/plain": [
" Segment Country Product Discount Band Units Sold ... Profit \\\n",
"0 Government Canada Carretera None 1618.5 ... 16185.0 \n",
"1 Government Germany Carretera None 1321.0 ... 13210.0 \n",
"2 Midmarket France Carretera None 2178.0 ... 10890.0 \n",
"3 Midmarket Germany Carretera None 888.0 ... 4440.0 \n",
"4 Midmarket Mexico Carretera None 2470.0 ... 12350.0 \n",
"\n",
" Date Month Number Month Name Year \n",
"0 2014-01-01 1 January 2014 \n",
"1 2014-01-01 1 January 2014 \n",
"2 2014-06-01 6 June 2014 \n",
"3 2014-06-01 6 June 2014 \n",
"4 2014-06-01 6 June 2014 \n",
"\n",
"[5 rows x 16 columns]"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[0:5]"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "362b0c27-e71d-4eaf-8a68-662bcae44e71",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Segment | \n",
" Country | \n",
" Product | \n",
" Discount Band | \n",
" Units Sold | \n",
" ... | \n",
" Profit | \n",
" Date | \n",
" Month Number | \n",
" Month Name | \n",
" Year | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Government | \n",
" Canada | \n",
" Carretera | \n",
" None | \n",
" 1618.5 | \n",
" ... | \n",
" 16185.000 | \n",
" 2014-01-01 | \n",
" 1 | \n",
" January | \n",
" 2014 | \n",
"
\n",
" \n",
" 5 | \n",
" Government | \n",
" Germany | \n",
" Carretera | \n",
" None | \n",
" 1513.0 | \n",
" ... | \n",
" 136170.000 | \n",
" 2014-12-01 | \n",
" 12 | \n",
" December | \n",
" 2014 | \n",
"
\n",
" \n",
" 10 | \n",
" Midmarket | \n",
" Mexico | \n",
" Montana | \n",
" None | \n",
" 2470.0 | \n",
" ... | \n",
" 12350.000 | \n",
" 2014-06-01 | \n",
" 6 | \n",
" June | \n",
" 2014 | \n",
"
\n",
" \n",
" 15 | \n",
" Midmarket | \n",
" United States of America | \n",
" Montana | \n",
" None | \n",
" 615.0 | \n",
" ... | \n",
" 3075.000 | \n",
" 2014-12-01 | \n",
" 12 | \n",
" December | \n",
" 2014 | \n",
"
\n",
" \n",
" 20 | \n",
" Channel Partners | \n",
" Germany | \n",
" Paseo | \n",
" None | \n",
" 367.0 | \n",
" ... | \n",
" 3303.000 | \n",
" 2014-07-01 | \n",
" 7 | \n",
" July | \n",
" 2014 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 75 | \n",
" Government | \n",
" United States of America | \n",
" Paseo | \n",
" Low | \n",
" 4492.5 | \n",
" ... | \n",
" 8670.525 | \n",
" 2014-04-01 | \n",
" 4 | \n",
" April | \n",
" 2014 | \n",
"
\n",
" \n",
" 80 | \n",
" Channel Partners | \n",
" Germany | \n",
" Paseo | \n",
" Low | \n",
" 766.0 | \n",
" ... | \n",
" 6802.080 | \n",
" 2013-10-01 | \n",
" 10 | \n",
" October | \n",
" 2013 | \n",
"
\n",
" \n",
" 85 | \n",
" Enterprise | \n",
" Canada | \n",
" Velo | \n",
" Low | \n",
" 923.0 | \n",
" ... | \n",
" 3461.250 | \n",
" 2014-08-01 | \n",
" 8 | \n",
" August | \n",
" 2014 | \n",
"
\n",
" \n",
" 90 | \n",
" Enterprise | \n",
" United States of America | \n",
" VTT | \n",
" Low | \n",
" 727.0 | \n",
" ... | \n",
" 2726.250 | \n",
" 2014-06-01 | \n",
" 6 | \n",
" June | \n",
" 2014 | \n",
"
\n",
" \n",
" 95 | \n",
" Enterprise | \n",
" France | \n",
" VTT | \n",
" Low | \n",
" 1744.0 | \n",
" ... | \n",
" 6540.000 | \n",
" 2014-11-01 | \n",
" 11 | \n",
" November | \n",
" 2014 | \n",
"
\n",
" \n",
"
\n",
"
20 rows × 16 columns
\n",
"
"
],
"text/plain": [
" Segment Country Product Discount Band \\\n",
"0 Government Canada Carretera None \n",
"5 Government Germany Carretera None \n",
"10 Midmarket Mexico Montana None \n",
"15 Midmarket United States of America Montana None \n",
"20 Channel Partners Germany Paseo None \n",
".. ... ... ... ... \n",
"75 Government United States of America Paseo Low \n",
"80 Channel Partners Germany Paseo Low \n",
"85 Enterprise Canada Velo Low \n",
"90 Enterprise United States of America VTT Low \n",
"95 Enterprise France VTT Low \n",
"\n",
" Units Sold ... Profit Date Month Number Month Name Year \n",
"0 1618.5 ... 16185.000 2014-01-01 1 January 2014 \n",
"5 1513.0 ... 136170.000 2014-12-01 12 December 2014 \n",
"10 2470.0 ... 12350.000 2014-06-01 6 June 2014 \n",
"15 615.0 ... 3075.000 2014-12-01 12 December 2014 \n",
"20 367.0 ... 3303.000 2014-07-01 7 July 2014 \n",
".. ... ... ... ... ... ... ... \n",
"75 4492.5 ... 8670.525 2014-04-01 4 April 2014 \n",
"80 766.0 ... 6802.080 2013-10-01 10 October 2013 \n",
"85 923.0 ... 3461.250 2014-08-01 8 August 2014 \n",
"90 727.0 ... 2726.250 2014-06-01 6 June 2014 \n",
"95 1744.0 ... 6540.000 2014-11-01 11 November 2014 \n",
"\n",
"[20 rows x 16 columns]"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[0:100:5]"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "749023b7-2341-4d12-982b-525d1b180366",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Segment | \n",
" Country | \n",
" Product | \n",
"
\n",
" \n",
" \n",
" \n",
" 5 | \n",
" Government | \n",
" Germany | \n",
" Carretera | \n",
"
\n",
" \n",
" 6 | \n",
" Midmarket | \n",
" Germany | \n",
" Montana | \n",
"
\n",
" \n",
" 7 | \n",
" Channel Partners | \n",
" Canada | \n",
" Montana | \n",
"
\n",
" \n",
" 8 | \n",
" Government | \n",
" France | \n",
" Montana | \n",
"
\n",
" \n",
" 9 | \n",
" Channel Partners | \n",
" Germany | \n",
" Montana | \n",
"
\n",
" \n",
" 10 | \n",
" Midmarket | \n",
" Mexico | \n",
" Montana | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Segment Country Product\n",
"5 Government Germany Carretera\n",
"6 Midmarket Germany Montana\n",
"7 Channel Partners Canada Montana\n",
"8 Government France Montana\n",
"9 Channel Partners Germany Montana\n",
"10 Midmarket Mexico Montana"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.loc[5:10,'Segment':'Product']"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "4e9d0dec-f811-4c64-8337-71396fb04fa1",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Product | \n",
" Discount Band | \n",
" Units Sold | \n",
"
\n",
" \n",
" \n",
" \n",
" 5 | \n",
" Carretera | \n",
" None | \n",
" 1513.0 | \n",
"
\n",
" \n",
" 6 | \n",
" Montana | \n",
" None | \n",
" 921.0 | \n",
"
\n",
" \n",
" 7 | \n",
" Montana | \n",
" None | \n",
" 2518.0 | \n",
"
\n",
" \n",
" 8 | \n",
" Montana | \n",
" None | \n",
" 1899.0 | \n",
"
\n",
" \n",
" 9 | \n",
" Montana | \n",
" None | \n",
" 1545.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Product Discount Band Units Sold\n",
"5 Carretera None 1513.0\n",
"6 Montana None 921.0\n",
"7 Montana None 2518.0\n",
"8 Montana None 1899.0\n",
"9 Montana None 1545.0"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.iloc[5:10,2:5]"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "d4247f61-14b9-439c-a9ac-15cc643fbbb7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 False\n",
"1 False\n",
"2 False\n",
"3 True\n",
"4 False\n",
" ... \n",
"695 False\n",
"696 True\n",
"697 False\n",
"698 True\n",
"699 False\n",
"Name: Units Sold, Length: 700, dtype: bool"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s = df['Units Sold'] < 1000\n",
"s"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "927679cf-8966-41d6-9e18-6afe2a852b1b",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Segment | \n",
" Country | \n",
" Product | \n",
" Discount Band | \n",
" Units Sold | \n",
" ... | \n",
" Profit | \n",
" Date | \n",
" Month Number | \n",
" Month Name | \n",
" Year | \n",
"
\n",
" \n",
" \n",
" \n",
" 3 | \n",
" Midmarket | \n",
" Germany | \n",
" Carretera | \n",
" None | \n",
" 888.0 | \n",
" ... | \n",
" 4440.00 | \n",
" 2014-06-01 | \n",
" 6 | \n",
" June | \n",
" 2014 | \n",
"
\n",
" \n",
" 6 | \n",
" Midmarket | \n",
" Germany | \n",
" Montana | \n",
" None | \n",
" 921.0 | \n",
" ... | \n",
" 4605.00 | \n",
" 2014-03-01 | \n",
" 3 | \n",
" March | \n",
" 2014 | \n",
"
\n",
" \n",
" 12 | \n",
" Small Business | \n",
" Mexico | \n",
" Montana | \n",
" None | \n",
" 958.0 | \n",
" ... | \n",
" 47900.00 | \n",
" 2014-08-01 | \n",
" 8 | \n",
" August | \n",
" 2014 | \n",
"
\n",
" \n",
" 14 | \n",
" Enterprise | \n",
" Canada | \n",
" Montana | \n",
" None | \n",
" 345.0 | \n",
" ... | \n",
" 1725.00 | \n",
" 2013-10-01 | \n",
" 10 | \n",
" October | \n",
" 2013 | \n",
"
\n",
" \n",
" 15 | \n",
" Midmarket | \n",
" United States of America | \n",
" Montana | \n",
" None | \n",
" 615.0 | \n",
" ... | \n",
" 3075.00 | \n",
" 2014-12-01 | \n",
" 12 | \n",
" December | \n",
" 2014 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 690 | \n",
" Government | \n",
" United States of America | \n",
" VTT | \n",
" High | \n",
" 267.0 | \n",
" ... | \n",
" 1869.00 | \n",
" 2013-10-01 | \n",
" 10 | \n",
" October | \n",
" 2013 | \n",
"
\n",
" \n",
" 693 | \n",
" Enterprise | \n",
" Germany | \n",
" VTT | \n",
" High | \n",
" 552.0 | \n",
" ... | \n",
" -7590.00 | \n",
" 2014-11-01 | \n",
" 11 | \n",
" November | \n",
" 2014 | \n",
"
\n",
" \n",
" 694 | \n",
" Government | \n",
" France | \n",
" VTT | \n",
" High | \n",
" 293.0 | \n",
" ... | \n",
" 2051.00 | \n",
" 2014-12-01 | \n",
" 12 | \n",
" December | \n",
" 2014 | \n",
"
\n",
" \n",
" 696 | \n",
" Small Business | \n",
" Mexico | \n",
" Amarilla | \n",
" High | \n",
" 546.0 | \n",
" ... | \n",
" 2730.00 | \n",
" 2014-10-01 | \n",
" 10 | \n",
" October | \n",
" 2014 | \n",
"
\n",
" \n",
" 698 | \n",
" Government | \n",
" Canada | \n",
" Paseo | \n",
" High | \n",
" 723.0 | \n",
" ... | \n",
" 686.85 | \n",
" 2014-04-01 | \n",
" 4 | \n",
" April | \n",
" 2014 | \n",
"
\n",
" \n",
"
\n",
"
201 rows × 16 columns
\n",
"
"
],
"text/plain": [
" Segment Country Product Discount Band \\\n",
"3 Midmarket Germany Carretera None \n",
"6 Midmarket Germany Montana None \n",
"12 Small Business Mexico Montana None \n",
"14 Enterprise Canada Montana None \n",
"15 Midmarket United States of America Montana None \n",
".. ... ... ... ... \n",
"690 Government United States of America VTT High \n",
"693 Enterprise Germany VTT High \n",
"694 Government France VTT High \n",
"696 Small Business Mexico Amarilla High \n",
"698 Government Canada Paseo High \n",
"\n",
" Units Sold ... Profit Date Month Number Month Name Year \n",
"3 888.0 ... 4440.00 2014-06-01 6 June 2014 \n",
"6 921.0 ... 4605.00 2014-03-01 3 March 2014 \n",
"12 958.0 ... 47900.00 2014-08-01 8 August 2014 \n",
"14 345.0 ... 1725.00 2013-10-01 10 October 2013 \n",
"15 615.0 ... 3075.00 2014-12-01 12 December 2014 \n",
".. ... ... ... ... ... ... ... \n",
"690 267.0 ... 1869.00 2013-10-01 10 October 2013 \n",
"693 552.0 ... -7590.00 2014-11-01 11 November 2014 \n",
"694 293.0 ... 2051.00 2014-12-01 12 December 2014 \n",
"696 546.0 ... 2730.00 2014-10-01 10 October 2014 \n",
"698 723.0 ... 686.85 2014-04-01 4 April 2014 \n",
"\n",
"[201 rows x 16 columns]"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[df['Units Sold'] < 1000]"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "5a16aad0-9c4e-47ce-871f-ed257aceb68a",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Segment | \n",
" Country | \n",
" Product | \n",
" Discount Band | \n",
" Units Sold | \n",
" ... | \n",
" Profit | \n",
" Date | \n",
" Month Number | \n",
" Month Name | \n",
" Year | \n",
"
\n",
" \n",
" \n",
" \n",
" 12 | \n",
" Small Business | \n",
" Mexico | \n",
" Montana | \n",
" None | \n",
" 958.0 | \n",
" ... | \n",
" 47900.00 | \n",
" 2014-08-01 | \n",
" 8 | \n",
" August | \n",
" 2014 | \n",
"
\n",
" \n",
" 23 | \n",
" Small Business | \n",
" Mexico | \n",
" Paseo | \n",
" None | \n",
" 788.0 | \n",
" ... | \n",
" 39400.00 | \n",
" 2013-09-01 | \n",
" 9 | \n",
" September | \n",
" 2013 | \n",
"
\n",
" \n",
" 65 | \n",
" Small Business | \n",
" Mexico | \n",
" Carretera | \n",
" Low | \n",
" 494.0 | \n",
" ... | \n",
" 23218.00 | \n",
" 2013-10-01 | \n",
" 10 | \n",
" October | \n",
" 2013 | \n",
"
\n",
" \n",
" 89 | \n",
" Government | \n",
" Canada | \n",
" VTT | \n",
" Low | \n",
" 943.5 | \n",
" ... | \n",
" 81612.75 | \n",
" 2014-04-01 | \n",
" 4 | \n",
" April | \n",
" 2014 | \n",
"
\n",
" \n",
" 92 | \n",
" Small Business | \n",
" Germany | \n",
" VTT | \n",
" Low | \n",
" 986.0 | \n",
" ... | \n",
" 46342.00 | \n",
" 2014-09-01 | \n",
" 9 | \n",
" September | \n",
" 2014 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 566 | \n",
" Government | \n",
" United States of America | \n",
" Amarilla | \n",
" High | \n",
" 270.0 | \n",
" ... | \n",
" 12960.00 | \n",
" 2014-02-01 | \n",
" 2 | \n",
" February | \n",
" 2014 | \n",
"
\n",
" \n",
" 578 | \n",
" Government | \n",
" Canada | \n",
" Carretera | \n",
" High | \n",
" 923.0 | \n",
" ... | \n",
" 41073.50 | \n",
" 2014-03-01 | \n",
" 3 | \n",
" March | \n",
" 2014 | \n",
"
\n",
" \n",
" 581 | \n",
" Government | \n",
" United States of America | \n",
" Montana | \n",
" High | \n",
" 982.5 | \n",
" ... | \n",
" 43721.25 | \n",
" 2014-01-01 | \n",
" 1 | \n",
" January | \n",
" 2014 | \n",
"
\n",
" \n",
" 596 | \n",
" Government | \n",
" Germany | \n",
" Paseo | \n",
" High | \n",
" 357.0 | \n",
" ... | \n",
" 15886.50 | \n",
" 2014-11-01 | \n",
" 11 | \n",
" November | \n",
" 2014 | \n",
"
\n",
" \n",
" 643 | \n",
" Government | \n",
" Canada | \n",
" Paseo | \n",
" High | \n",
" 700.0 | \n",
" ... | \n",
" 28700.00 | \n",
" 2014-11-01 | \n",
" 11 | \n",
" November | \n",
" 2014 | \n",
"
\n",
" \n",
"
\n",
"
53 rows × 16 columns
\n",
"
"
],
"text/plain": [
" Segment Country Product Discount Band \\\n",
"12 Small Business Mexico Montana None \n",
"23 Small Business Mexico Paseo None \n",
"65 Small Business Mexico Carretera Low \n",
"89 Government Canada VTT Low \n",
"92 Small Business Germany VTT Low \n",
".. ... ... ... ... \n",
"566 Government United States of America Amarilla High \n",
"578 Government Canada Carretera High \n",
"581 Government United States of America Montana High \n",
"596 Government Germany Paseo High \n",
"643 Government Canada Paseo High \n",
"\n",
" Units Sold ... Profit Date Month Number Month Name Year \n",
"12 958.0 ... 47900.00 2014-08-01 8 August 2014 \n",
"23 788.0 ... 39400.00 2013-09-01 9 September 2013 \n",
"65 494.0 ... 23218.00 2013-10-01 10 October 2013 \n",
"89 943.5 ... 81612.75 2014-04-01 4 April 2014 \n",
"92 986.0 ... 46342.00 2014-09-01 9 September 2014 \n",
".. ... ... ... ... ... ... ... \n",
"566 270.0 ... 12960.00 2014-02-01 2 February 2014 \n",
"578 923.0 ... 41073.50 2014-03-01 3 March 2014 \n",
"581 982.5 ... 43721.25 2014-01-01 1 January 2014 \n",
"596 357.0 ... 15886.50 2014-11-01 11 November 2014 \n",
"643 700.0 ... 28700.00 2014-11-01 11 November 2014 \n",
"\n",
"[53 rows x 16 columns]"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[(df['Units Sold'] < 1000) & (df['Profit'] > 10000)]"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "6548c41e-7fb3-44fc-8ffb-f02a70f77b75",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Segment | \n",
" Country | \n",
" Product | \n",
" Discount Band | \n",
" Units Sold | \n",
" ... | \n",
" Profit | \n",
" Date | \n",
" Month Number | \n",
" Month Name | \n",
" Year | \n",
"
\n",
" \n",
" \n",
" \n",
" 12 | \n",
" Small Business | \n",
" Mexico | \n",
" Montana | \n",
" None | \n",
" 958.0 | \n",
" ... | \n",
" 47900.00 | \n",
" 2014-08-01 | \n",
" 8 | \n",
" August | \n",
" 2014 | \n",
"
\n",
" \n",
" 23 | \n",
" Small Business | \n",
" Mexico | \n",
" Paseo | \n",
" None | \n",
" 788.0 | \n",
" ... | \n",
" 39400.00 | \n",
" 2013-09-01 | \n",
" 9 | \n",
" September | \n",
" 2013 | \n",
"
\n",
" \n",
" 65 | \n",
" Small Business | \n",
" Mexico | \n",
" Carretera | \n",
" Low | \n",
" 494.0 | \n",
" ... | \n",
" 23218.00 | \n",
" 2013-10-01 | \n",
" 10 | \n",
" October | \n",
" 2013 | \n",
"
\n",
" \n",
" 89 | \n",
" Government | \n",
" Canada | \n",
" VTT | \n",
" Low | \n",
" 943.5 | \n",
" ... | \n",
" 81612.75 | \n",
" 2014-04-01 | \n",
" 4 | \n",
" April | \n",
" 2014 | \n",
"
\n",
" \n",
" 92 | \n",
" Small Business | \n",
" Germany | \n",
" VTT | \n",
" Low | \n",
" 986.0 | \n",
" ... | \n",
" 46342.00 | \n",
" 2014-09-01 | \n",
" 9 | \n",
" September | \n",
" 2014 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 566 | \n",
" Government | \n",
" United States of America | \n",
" Amarilla | \n",
" High | \n",
" 270.0 | \n",
" ... | \n",
" 12960.00 | \n",
" 2014-02-01 | \n",
" 2 | \n",
" February | \n",
" 2014 | \n",
"
\n",
" \n",
" 578 | \n",
" Government | \n",
" Canada | \n",
" Carretera | \n",
" High | \n",
" 923.0 | \n",
" ... | \n",
" 41073.50 | \n",
" 2014-03-01 | \n",
" 3 | \n",
" March | \n",
" 2014 | \n",
"
\n",
" \n",
" 581 | \n",
" Government | \n",
" United States of America | \n",
" Montana | \n",
" High | \n",
" 982.5 | \n",
" ... | \n",
" 43721.25 | \n",
" 2014-01-01 | \n",
" 1 | \n",
" January | \n",
" 2014 | \n",
"
\n",
" \n",
" 596 | \n",
" Government | \n",
" Germany | \n",
" Paseo | \n",
" High | \n",
" 357.0 | \n",
" ... | \n",
" 15886.50 | \n",
" 2014-11-01 | \n",
" 11 | \n",
" November | \n",
" 2014 | \n",
"
\n",
" \n",
" 643 | \n",
" Government | \n",
" Canada | \n",
" Paseo | \n",
" High | \n",
" 700.0 | \n",
" ... | \n",
" 28700.00 | \n",
" 2014-11-01 | \n",
" 11 | \n",
" November | \n",
" 2014 | \n",
"
\n",
" \n",
"
\n",
"
53 rows × 16 columns
\n",
"
"
],
"text/plain": [
" Segment Country Product Discount Band \\\n",
"12 Small Business Mexico Montana None \n",
"23 Small Business Mexico Paseo None \n",
"65 Small Business Mexico Carretera Low \n",
"89 Government Canada VTT Low \n",
"92 Small Business Germany VTT Low \n",
".. ... ... ... ... \n",
"566 Government United States of America Amarilla High \n",
"578 Government Canada Carretera High \n",
"581 Government United States of America Montana High \n",
"596 Government Germany Paseo High \n",
"643 Government Canada Paseo High \n",
"\n",
" Units Sold ... Profit Date Month Number Month Name Year \n",
"12 958.0 ... 47900.00 2014-08-01 8 August 2014 \n",
"23 788.0 ... 39400.00 2013-09-01 9 September 2013 \n",
"65 494.0 ... 23218.00 2013-10-01 10 October 2013 \n",
"89 943.5 ... 81612.75 2014-04-01 4 April 2014 \n",
"92 986.0 ... 46342.00 2014-09-01 9 September 2014 \n",
".. ... ... ... ... ... ... ... \n",
"566 270.0 ... 12960.00 2014-02-01 2 February 2014 \n",
"578 923.0 ... 41073.50 2014-03-01 3 March 2014 \n",
"581 982.5 ... 43721.25 2014-01-01 1 January 2014 \n",
"596 357.0 ... 15886.50 2014-11-01 11 November 2014 \n",
"643 700.0 ... 28700.00 2014-11-01 11 November 2014 \n",
"\n",
"[53 rows x 16 columns]"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lowsold = df[df['Units Sold'] < 1000]\n",
"lowsold[lowsold['Profit'] > 10000]"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "889ec807-591b-41e6-9a40-780bb6b2f79b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[',Segment,Country,Product,Discount Band,Units Sold,Manufacturing Price,Sale Price,Gross Sales,Discounts,Sales,COGS,Profit,Date,Month Number,Month Name,Year\\n',\n",
" '3,Midmarket,Germany,Carretera,None,888.0,3,15,13320.0,0.0,13320.0,8880.0,4440.0,2014-06-01,6,June,2014\\n',\n",
" '6,Midmarket,Germany,Montana,None,921.0,5,15,13815.0,0.0,13815.0,9210.0,4605.0,2014-03-01,3,March,2014\\n',\n",
" '12,Small Business,Mexico,Montana,None,958.0,5,300,287400.0,0.0,287400.0,239500.0,47900.0,2014-08-01,8,August,2014\\n',\n",
" '14,Enterprise,Canada,Montana,None,345.0,5,125,43125.0,0.0,43125.0,41400.0,1725.0,2013-10-01,10,October,2013\\n']"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"file = os.path.join('files','lowsold.csv')\n",
"lowsold.to_csv(file)\n",
"open(file).readlines()[:5]"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "19493d2b-426e-43f6-9001-6605a75a0ec5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Segment,Country,Product,Discount Band,Units Sold,Manufacturing Price,Sale Price,Gross Sales,Discounts,Sales,COGS,Profit,Date,Month Number,Month Name,Year\\n',\n",
" 'Midmarket,Germany,Carretera,None,888.0,3,15,13320.0,0.0,13320.0,8880.0,4440.0,2014-06-01,6,June,2014\\n',\n",
" 'Midmarket,Germany,Montana,None,921.0,5,15,13815.0,0.0,13815.0,9210.0,4605.0,2014-03-01,3,March,2014\\n',\n",
" 'Small Business,Mexico,Montana,None,958.0,5,300,287400.0,0.0,287400.0,239500.0,47900.0,2014-08-01,8,August,2014\\n',\n",
" 'Enterprise,Canada,Montana,None,345.0,5,125,43125.0,0.0,43125.0,41400.0,1725.0,2013-10-01,10,October,2013\\n']"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"file = os.path.join('files','lowsold-noindex.csv')\n",
"lowsold.to_csv(file,index=False)\n",
"open(file).readlines()[:5]"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "56211b13-a695-46b7-b5eb-15095e7d61a3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Midmarket,Germany,Carretera,None,888.0,3,15,13320.0,0.0,13320.0,8880.0,4440.0,2014-06-01,6,June,2014\\n',\n",
" 'Midmarket,Germany,Montana,None,921.0,5,15,13815.0,0.0,13815.0,9210.0,4605.0,2014-03-01,3,March,2014\\n',\n",
" 'Small Business,Mexico,Montana,None,958.0,5,300,287400.0,0.0,287400.0,239500.0,47900.0,2014-08-01,8,August,2014\\n',\n",
" 'Enterprise,Canada,Montana,None,345.0,5,125,43125.0,0.0,43125.0,41400.0,1725.0,2013-10-01,10,October,2013\\n',\n",
" 'Midmarket,United States of America,Montana,None,615.0,5,15,9225.0,0.0,9225.0,6150.0,3075.0,2014-12-01,12,December,2014\\n']"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"file = os.path.join('files','lowsold-noindex.csv')\n",
"lowsold.to_csv(file,index=False,header=False)\n",
"open(file).readlines()[:5]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "70f52a45-e4c1-4d1e-9ae8-e1ed435aa8af",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}