{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "d5ee1824-dbed-4e1e-81d5-c68ed0639538", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 1\n", "1 16\n", "2 31\n", "3 46\n", "4 61\n", " ... \n", "62 931\n", "63 946\n", "64 961\n", "65 976\n", "66 991\n", "Length: 67, dtype: int64" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "\n", "pd.Series(range(1,1000,15))" ] }, { "cell_type": "code", "execution_count": 2, "id": "42729008-00a8-43d0-82c5-e9d27de2a927", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 1\n", "1 2\n", "2 3\n", "3 4\n", "4 5\n", " ... \n", "994 995\n", "995 996\n", "996 997\n", "997 998\n", "998 999\n", "Name: ordernumber, Length: 999, dtype: int64" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.Series(range(1,1000),name='ordernumber')" ] }, { "cell_type": "code", "execution_count": 3, "id": "478a3b5d-c490-4f67-92a9-a786413ab7c2", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0123456789
00.0514600.3456040.7911560.4406720.4506250.9803990.4055550.6611310.7782480.514650
10.8248180.8289410.8840230.7601360.3504690.2894110.0435740.8363600.8908520.212008
20.9155310.1109260.3946500.8540190.6909070.4872900.3260020.3104390.2186540.268796
30.5109510.8051790.9092920.4070760.9938120.0893410.6158070.5832660.5428030.095077
40.9608930.9796360.0129980.8050100.7040810.7384080.7606240.8452980.3918420.371173
.................................
950.2306570.0953240.3568320.2280420.8471670.7778260.4608110.7841490.1737060.585010
960.5223130.1749660.4486250.5204220.6795860.0658590.8674420.2986660.1502840.950080
970.8418300.4793700.3445300.8278160.0328710.7168970.7327300.0601780.6454260.530073
980.3121040.9814840.7595500.2625740.3370670.2397350.5004500.7973330.0115230.275411
990.2306300.5607440.3371110.4143820.2207040.8071700.3756920.2509780.1642410.490498
\n", "

100 rows × 10 columns

\n", "
" ], "text/plain": [ " 0 1 2 3 4 5 6 \\\n", "0 0.051460 0.345604 0.791156 0.440672 0.450625 0.980399 0.405555 \n", "1 0.824818 0.828941 0.884023 0.760136 0.350469 0.289411 0.043574 \n", "2 0.915531 0.110926 0.394650 0.854019 0.690907 0.487290 0.326002 \n", "3 0.510951 0.805179 0.909292 0.407076 0.993812 0.089341 0.615807 \n", "4 0.960893 0.979636 0.012998 0.805010 0.704081 0.738408 0.760624 \n", ".. ... ... ... ... ... ... ... \n", "95 0.230657 0.095324 0.356832 0.228042 0.847167 0.777826 0.460811 \n", "96 0.522313 0.174966 0.448625 0.520422 0.679586 0.065859 0.867442 \n", "97 0.841830 0.479370 0.344530 0.827816 0.032871 0.716897 0.732730 \n", "98 0.312104 0.981484 0.759550 0.262574 0.337067 0.239735 0.500450 \n", "99 0.230630 0.560744 0.337111 0.414382 0.220704 0.807170 0.375692 \n", "\n", " 7 8 9 \n", "0 0.661131 0.778248 0.514650 \n", "1 0.836360 0.890852 0.212008 \n", "2 0.310439 0.218654 0.268796 \n", "3 0.583266 0.542803 0.095077 \n", "4 0.845298 0.391842 0.371173 \n", ".. ... ... ... \n", "95 0.784149 0.173706 0.585010 \n", "96 0.298666 0.150284 0.950080 \n", "97 0.060178 0.645426 0.530073 \n", "98 0.797333 0.011523 0.275411 \n", "99 0.250978 0.164241 0.490498 \n", "\n", "[100 rows x 10 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "\n", "pd.DataFrame(np.random.rand(100,10))" ] }, { "cell_type": "code", "execution_count": 4, "id": "b721e785-0bdb-472f-ad88-b248f10a9b74", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abcdefghij
00.6068300.6013150.9102060.8312950.1199630.8338290.8224650.8573540.0131060.051223
10.5165520.3749510.6900150.8460370.9858390.5196830.7112100.2560820.8794960.414224
20.3776140.2258530.0634500.8524760.8666750.2623550.9832610.8211230.1227510.994068
30.6433660.9317510.3200630.2712830.1488350.1122630.1719320.7464680.8350420.309719
40.8186080.6094090.6815720.8097090.6506730.9149000.9342360.7295030.7291540.117995
.................................
950.2918340.8960330.3805130.2119150.6113660.3397890.3809310.4064800.9669550.272316
960.8342340.5824810.3276620.0612200.6652890.7210580.3395610.1980450.4722030.574335
970.7091090.6513550.4707490.2503040.2740540.8431040.1376030.9902430.7123630.346610
980.2570440.0445390.5745670.1972570.3608440.9649150.2831420.9878740.7956310.720949
990.1620930.5919940.1276880.5808670.8507490.2154440.3208570.1749990.7371120.286279
\n", "

100 rows × 10 columns

\n", "
" ], "text/plain": [ " a b c d e f g \\\n", "0 0.606830 0.601315 0.910206 0.831295 0.119963 0.833829 0.822465 \n", "1 0.516552 0.374951 0.690015 0.846037 0.985839 0.519683 0.711210 \n", "2 0.377614 0.225853 0.063450 0.852476 0.866675 0.262355 0.983261 \n", "3 0.643366 0.931751 0.320063 0.271283 0.148835 0.112263 0.171932 \n", "4 0.818608 0.609409 0.681572 0.809709 0.650673 0.914900 0.934236 \n", ".. ... ... ... ... ... ... ... \n", "95 0.291834 0.896033 0.380513 0.211915 0.611366 0.339789 0.380931 \n", "96 0.834234 0.582481 0.327662 0.061220 0.665289 0.721058 0.339561 \n", "97 0.709109 0.651355 0.470749 0.250304 0.274054 0.843104 0.137603 \n", "98 0.257044 0.044539 0.574567 0.197257 0.360844 0.964915 0.283142 \n", "99 0.162093 0.591994 0.127688 0.580867 0.850749 0.215444 0.320857 \n", "\n", " h i j \n", "0 0.857354 0.013106 0.051223 \n", "1 0.256082 0.879496 0.414224 \n", "2 0.821123 0.122751 0.994068 \n", "3 0.746468 0.835042 0.309719 \n", "4 0.729503 0.729154 0.117995 \n", ".. ... ... ... \n", "95 0.406480 0.966955 0.272316 \n", "96 0.198045 0.472203 0.574335 \n", "97 0.990243 0.712363 0.346610 \n", "98 0.987874 0.795631 0.720949 \n", "99 0.174999 0.737112 0.286279 \n", "\n", "[100 rows x 10 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame(np.random.rand(100,10),columns=list('abcdefghij'))" ] }, { "cell_type": "code", "execution_count": 5, "id": "e141f22c-b59a-49a1-a73f-8541ee7ef798", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datevalue
02022-08-030.229989
12022-08-040.356387
22022-08-050.264751
32022-08-060.435229
42022-08-070.898069
52022-08-080.967762
62022-08-090.369329
72022-08-100.348415
82022-08-110.082138
92022-08-120.111789
\n", "
" ], "text/plain": [ " date value\n", "0 2022-08-03 0.229989\n", "1 2022-08-04 0.356387\n", "2 2022-08-05 0.264751\n", "3 2022-08-06 0.435229\n", "4 2022-08-07 0.898069\n", "5 2022-08-08 0.967762\n", "6 2022-08-09 0.369329\n", "7 2022-08-10 0.348415\n", "8 2022-08-11 0.082138\n", "9 2022-08-12 0.111789" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import datetime as dt\n", "\n", "s1 = pd.Series(pd.date_range(dt.date.today(),periods=10))\n", "s2 = pd.Series(np.random.rand(10))\n", "\n", "pd.DataFrame(\n", " {\n", " 'date':s1,\n", " 'value':s2\n", " }\n", ")" ] }, { "cell_type": "code", "execution_count": 6, "id": "8d60df6a-afda-47e9-8015-d71de7e4a494", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'date': DatetimeIndex(['2022-08-03', '2022-08-04', '2022-08-05', '2022-08-06',\n", " '2022-08-07'],\n", " dtype='datetime64[ns]', freq='D'),\n", " 'value': array([0.3197036 , 0.52098407, 0.27933677, 0.57908009, 0.3376671 ])}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = {\n", " 'date': pd.date_range(dt.date.today(),periods=5),\n", " 'value': np.random.rand(5)\n", "}\n", "data" ] }, { "cell_type": "code", "execution_count": 7, "id": "fd806f44-4bcb-4cb9-ad32-08db7c7fc373", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datevalue
02022-08-030.319704
12022-08-040.520984
22022-08-050.279337
32022-08-060.579080
42022-08-070.337667
\n", "
" ], "text/plain": [ " date value\n", "0 2022-08-03 0.319704\n", "1 2022-08-04 0.520984\n", "2 2022-08-05 0.279337\n", "3 2022-08-06 0.579080\n", "4 2022-08-07 0.337667" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame.from_dict(data)" ] }, { "cell_type": "code", "execution_count": 8, "id": "998dd959-8a23-460d-917a-ea95854e1567", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{0: [Timestamp('2022-08-03 00:00:00', freq='D'), 0.3808097904504616, 73],\n", " 1: [Timestamp('2022-08-04 00:00:00', freq='D'), 0.5905372296633548, 50],\n", " 2: [Timestamp('2022-08-05 00:00:00', freq='D'), 0.843340861241361, 33],\n", " 3: [Timestamp('2022-08-06 00:00:00', freq='D'), 0.6522567142909306, 39],\n", " 4: [Timestamp('2022-08-07 00:00:00', freq='D'), 0.8831824961187278, 4]}" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = {\n", " i: [d , np.random.rand(), np.random.randint(1,100)]\n", " for i,d in enumerate(pd.date_range(dt.date.today(),periods=5))\n", "}\n", "data" ] }, { "cell_type": "code", "execution_count": 9, "id": "46705db4-6747-44c7-8a8d-a43dbe2f0c9a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datefloatint
02022-08-030.38081073
12022-08-040.59053750
22022-08-050.84334133
32022-08-060.65225739
42022-08-070.8831824
\n", "
" ], "text/plain": [ " date float int\n", "0 2022-08-03 0.380810 73\n", "1 2022-08-04 0.590537 50\n", "2 2022-08-05 0.843341 33\n", "3 2022-08-06 0.652257 39\n", "4 2022-08-07 0.883182 4" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame.from_dict(data,orient='index',columns=['date','float','int'])" ] }, { "cell_type": "code", "execution_count": 10, "id": "57fa2c92-b224-478c-81e8-ee5f4dac708f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[{'date': Timestamp('2022-08-03 00:00:00', freq='D'),\n", " 'float': 0.1493111724826941,\n", " 'int': 34},\n", " {'date': Timestamp('2022-08-04 00:00:00', freq='D'),\n", " 'float': 0.6487476480583498,\n", " 'int': 36},\n", " {'date': Timestamp('2022-08-05 00:00:00', freq='D'),\n", " 'float': 0.8526625460198155,\n", " 'int': 98},\n", " {'date': Timestamp('2022-08-06 00:00:00', freq='D'),\n", " 'float': 0.270909052559152,\n", " 'int': 4},\n", " {'date': Timestamp('2022-08-07 00:00:00', freq='D'),\n", " 'float': 0.07841641226720986,\n", " 'int': 43}]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = [\n", " {'date': d, 'float': np.random.rand(), 'int': np.random.randint(1,100)}\n", " for d in pd.date_range(dt.date.today(),periods=5)\n", "]\n", "data" ] }, { "cell_type": "code", "execution_count": 11, "id": "4ac818fc-cc4d-4fc6-86e6-db99e80e7db0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
datefloatint
02022-08-030.14931134
12022-08-040.64874836
22022-08-050.85266398
32022-08-060.2709094
42022-08-070.07841643
\n", "
" ], "text/plain": [ " date float int\n", "0 2022-08-03 0.149311 34\n", "1 2022-08-04 0.648748 36\n", "2 2022-08-05 0.852663 98\n", "3 2022-08-06 0.270909 4\n", "4 2022-08-07 0.078416 43" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame.from_records(data)" ] }, { "cell_type": "code", "execution_count": 12, "id": "85001e4c-0012-4fd6-8478-6f53e48158a0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dateGOOGAAPLAMZNFBNFLXMSFT
02018-01-011.0000001.0000001.0000001.0000001.0000001.000000
12018-01-081.0181721.0119431.0618810.9599681.0535261.015988
22018-01-151.0320081.0197711.0532400.9702431.0498601.020524
32018-01-221.0667830.9800571.1406761.0168581.3076811.066561
42018-01-291.0087730.9171431.1633741.0183571.2735371.040708
........................
1002019-12-021.2162801.5469141.4250611.0759971.4636411.720717
1012019-12-091.2228211.5722861.4326601.0388551.4214961.752239
1022019-12-161.2244181.5968001.4534551.1040941.6043621.784896
1032019-12-231.2265041.6560001.5212261.1137281.5671701.802472
1042019-12-301.2130141.6780001.5033601.0984751.5408831.788185
\n", "

105 rows × 7 columns

\n", "
" ], "text/plain": [ " date GOOG AAPL AMZN FB NFLX MSFT\n", "0 2018-01-01 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000\n", "1 2018-01-08 1.018172 1.011943 1.061881 0.959968 1.053526 1.015988\n", "2 2018-01-15 1.032008 1.019771 1.053240 0.970243 1.049860 1.020524\n", "3 2018-01-22 1.066783 0.980057 1.140676 1.016858 1.307681 1.066561\n", "4 2018-01-29 1.008773 0.917143 1.163374 1.018357 1.273537 1.040708\n", ".. ... ... ... ... ... ... ...\n", "100 2019-12-02 1.216280 1.546914 1.425061 1.075997 1.463641 1.720717\n", "101 2019-12-09 1.222821 1.572286 1.432660 1.038855 1.421496 1.752239\n", "102 2019-12-16 1.224418 1.596800 1.453455 1.104094 1.604362 1.784896\n", "103 2019-12-23 1.226504 1.656000 1.521226 1.113728 1.567170 1.802472\n", "104 2019-12-30 1.213014 1.678000 1.503360 1.098475 1.540883 1.788185\n", "\n", "[105 rows x 7 columns]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import os\n", "pd.read_csv(os.path.join('files','stocks.csv'))" ] }, { "cell_type": "code", "execution_count": 13, "id": "8f791f79-fefc-4601-b409-22ba6235a1bd", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abcdefg
02018-01-011.0000001.0000001.0000001.0000001.0000001.000000
12018-01-081.0181721.0119431.0618810.9599681.0535261.015988
22018-01-151.0320081.0197711.0532400.9702431.0498601.020524
32018-01-221.0667830.9800571.1406761.0168581.3076811.066561
42018-01-291.0087730.9171431.1633741.0183571.2735371.040708
........................
1002019-12-021.2162801.5469141.4250611.0759971.4636411.720717
1012019-12-091.2228211.5722861.4326601.0388551.4214961.752239
1022019-12-161.2244181.5968001.4534551.1040941.6043621.784896
1032019-12-231.2265041.6560001.5212261.1137281.5671701.802472
1042019-12-301.2130141.6780001.5033601.0984751.5408831.788185
\n", "

105 rows × 7 columns

\n", "
" ], "text/plain": [ " a b c d e f g\n", "0 2018-01-01 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000\n", "1 2018-01-08 1.018172 1.011943 1.061881 0.959968 1.053526 1.015988\n", "2 2018-01-15 1.032008 1.019771 1.053240 0.970243 1.049860 1.020524\n", "3 2018-01-22 1.066783 0.980057 1.140676 1.016858 1.307681 1.066561\n", "4 2018-01-29 1.008773 0.917143 1.163374 1.018357 1.273537 1.040708\n", ".. ... ... ... ... ... ... ...\n", "100 2019-12-02 1.216280 1.546914 1.425061 1.075997 1.463641 1.720717\n", "101 2019-12-09 1.222821 1.572286 1.432660 1.038855 1.421496 1.752239\n", "102 2019-12-16 1.224418 1.596800 1.453455 1.104094 1.604362 1.784896\n", "103 2019-12-23 1.226504 1.656000 1.521226 1.113728 1.567170 1.802472\n", "104 2019-12-30 1.213014 1.678000 1.503360 1.098475 1.540883 1.788185\n", "\n", "[105 rows x 7 columns]" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_csv(os.path.join('files','stocks-noheader.csv'),names=list('abcdefg'))" ] }, { "cell_type": "code", "execution_count": 14, "id": "f56477ad-921c-4957-81e0-998f5a4ac5d0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
GOOGAAPLAMZNFBNFLXMSFT
date
2018-01-011.0000001.0000001.0000001.0000001.0000001.000000
2018-01-081.0181721.0119431.0618810.9599681.0535261.015988
2018-01-151.0320081.0197711.0532400.9702431.0498601.020524
2018-01-221.0667830.9800571.1406761.0168581.3076811.066561
2018-01-291.0087730.9171431.1633741.0183571.2735371.040708
.....................
2019-12-021.2162801.5469141.4250611.0759971.4636411.720717
2019-12-091.2228211.5722861.4326601.0388551.4214961.752239
2019-12-161.2244181.5968001.4534551.1040941.6043621.784896
2019-12-231.2265041.6560001.5212261.1137281.5671701.802472
2019-12-301.2130141.6780001.5033601.0984751.5408831.788185
\n", "

105 rows × 6 columns

\n", "
" ], "text/plain": [ " GOOG AAPL AMZN FB NFLX MSFT\n", "date \n", "2018-01-01 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000\n", "2018-01-08 1.018172 1.011943 1.061881 0.959968 1.053526 1.015988\n", "2018-01-15 1.032008 1.019771 1.053240 0.970243 1.049860 1.020524\n", "2018-01-22 1.066783 0.980057 1.140676 1.016858 1.307681 1.066561\n", "2018-01-29 1.008773 0.917143 1.163374 1.018357 1.273537 1.040708\n", "... ... ... ... ... ... ...\n", "2019-12-02 1.216280 1.546914 1.425061 1.075997 1.463641 1.720717\n", "2019-12-09 1.222821 1.572286 1.432660 1.038855 1.421496 1.752239\n", "2019-12-16 1.224418 1.596800 1.453455 1.104094 1.604362 1.784896\n", "2019-12-23 1.226504 1.656000 1.521226 1.113728 1.567170 1.802472\n", "2019-12-30 1.213014 1.678000 1.503360 1.098475 1.540883 1.788185\n", "\n", "[105 rows x 6 columns]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_csv(os.path.join('files','stocks.csv'),index_col='date')" ] }, { "cell_type": "code", "execution_count": 15, "id": "d863d2cc-4063-4695-95a6-4db9f078dc32", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dateGOOGAAPL
02018-01-011.0000001.000000
12018-01-081.0181721.011943
22018-01-151.0320081.019771
32018-01-221.0667830.980057
42018-01-291.0087730.917143
............
1002019-12-021.2162801.546914
1012019-12-091.2228211.572286
1022019-12-161.2244181.596800
1032019-12-231.2265041.656000
1042019-12-301.2130141.678000
\n", "

105 rows × 3 columns

\n", "
" ], "text/plain": [ " date GOOG AAPL\n", "0 2018-01-01 1.000000 1.000000\n", "1 2018-01-08 1.018172 1.011943\n", "2 2018-01-15 1.032008 1.019771\n", "3 2018-01-22 1.066783 0.980057\n", "4 2018-01-29 1.008773 0.917143\n", ".. ... ... ...\n", "100 2019-12-02 1.216280 1.546914\n", "101 2019-12-09 1.222821 1.572286\n", "102 2019-12-16 1.224418 1.596800\n", "103 2019-12-23 1.226504 1.656000\n", "104 2019-12-30 1.213014 1.678000\n", "\n", "[105 rows x 3 columns]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_csv(os.path.join('files','stocks.csv'),usecols=[0,1,2])" ] }, { "cell_type": "code", "execution_count": 16, "id": "5048c5e5-32e3-4a70-ab20-1dd337e03254", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dateGOOGMSFT
02018-01-011.0000001.000000
12018-01-081.0181721.015988
22018-01-151.0320081.020524
32018-01-221.0667831.066561
42018-01-291.0087731.040708
............
1002019-12-021.2162801.720717
1012019-12-091.2228211.752239
1022019-12-161.2244181.784896
1032019-12-231.2265041.802472
1042019-12-301.2130141.788185
\n", "

105 rows × 3 columns

\n", "
" ], "text/plain": [ " date GOOG MSFT\n", "0 2018-01-01 1.000000 1.000000\n", "1 2018-01-08 1.018172 1.015988\n", "2 2018-01-15 1.032008 1.020524\n", "3 2018-01-22 1.066783 1.066561\n", "4 2018-01-29 1.008773 1.040708\n", ".. ... ... ...\n", "100 2019-12-02 1.216280 1.720717\n", "101 2019-12-09 1.222821 1.752239\n", "102 2019-12-16 1.224418 1.784896\n", "103 2019-12-23 1.226504 1.802472\n", "104 2019-12-30 1.213014 1.788185\n", "\n", "[105 rows x 3 columns]" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(os.path.join('files','stocks.csv'),usecols=['date','GOOG','MSFT'])\n", "df" ] }, { "cell_type": "code", "execution_count": 17, "id": "1e5c5813-6b5c-47bf-ba11-10bb8e2e8ae9", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 2018-01-01\n", "1 2018-01-08\n", "2 2018-01-15\n", "3 2018-01-22\n", "4 2018-01-29\n", " ... \n", "100 2019-12-02\n", "101 2019-12-09\n", "102 2019-12-16\n", "103 2019-12-23\n", "104 2019-12-30\n", "Name: date, Length: 105, dtype: object" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['date']" ] }, { "cell_type": "code", "execution_count": 18, "id": "6a0485a0-c194-48bb-a656-43f69b3d1120", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 2018-01-01\n", "1 2018-01-08\n", "2 2018-01-15\n", "3 2018-01-22\n", "4 2018-01-29\n", " ... \n", "100 2019-12-02\n", "101 2019-12-09\n", "102 2019-12-16\n", "103 2019-12-23\n", "104 2019-12-30\n", "Name: date, Length: 105, dtype: datetime64[ns]" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(os.path.join('files','stocks.csv'),usecols=['date','GOOG','MSFT'],parse_dates=['date'])\n", "df['date']" ] }, { "cell_type": "code", "execution_count": 19, "id": "4745a79c-9280-4622-b528-f9505b322e08", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SegmentCountryProductDiscount BandUnits SoldManufacturing PriceSale PriceGross SalesDiscountsSalesCOGSProfitDateMonth NumberMonth NameYear
0GovernmentCanadaCarreteraNone1618.532032370.00.0032370.0016185.016185.002014-01-011January2014
1GovernmentGermanyCarreteraNone1321.032026420.00.0026420.0013210.013210.002014-01-011January2014
2MidmarketFranceCarreteraNone2178.031532670.00.0032670.0021780.010890.002014-06-016June2014
3MidmarketGermanyCarreteraNone888.031513320.00.0013320.008880.04440.002014-06-016June2014
4MidmarketMexicoCarreteraNone2470.031537050.00.0037050.0024700.012350.002014-06-016June2014
...................................................
695Small BusinessFranceAmarillaHigh2475.0260300742500.0111375.00631125.00618750.012375.002014-03-013March2014
696Small BusinessMexicoAmarillaHigh546.0260300163800.024570.00139230.00136500.02730.002014-10-0110October2014
697GovernmentMexicoMontanaHigh1368.0579576.01436.408139.606840.01299.602014-02-012February2014
698GovernmentCanadaPaseoHigh723.01075061.0759.154301.853615.0686.852014-04-014April2014
699Channel PartnersUnited States of AmericaVTTHigh1806.02501221672.03250.8018421.205418.013003.202014-05-015May2014
\n", "

700 rows × 16 columns

\n", "
" ], "text/plain": [ " Segment Country Product Discount Band \\\n", "0 Government Canada Carretera None \n", "1 Government Germany Carretera None \n", "2 Midmarket France Carretera None \n", "3 Midmarket Germany Carretera None \n", "4 Midmarket Mexico Carretera None \n", ".. ... ... ... ... \n", "695 Small Business France Amarilla High \n", "696 Small Business Mexico Amarilla High \n", "697 Government Mexico Montana High \n", "698 Government Canada Paseo High \n", "699 Channel Partners United States of America VTT High \n", "\n", " Units Sold Manufacturing Price Sale Price Gross Sales Discounts \\\n", "0 1618.5 3 20 32370.0 0.00 \n", "1 1321.0 3 20 26420.0 0.00 \n", "2 2178.0 3 15 32670.0 0.00 \n", "3 888.0 3 15 13320.0 0.00 \n", "4 2470.0 3 15 37050.0 0.00 \n", ".. ... ... ... ... ... \n", "695 2475.0 260 300 742500.0 111375.00 \n", "696 546.0 260 300 163800.0 24570.00 \n", "697 1368.0 5 7 9576.0 1436.40 \n", "698 723.0 10 7 5061.0 759.15 \n", "699 1806.0 250 12 21672.0 3250.80 \n", "\n", " Sales COGS Profit Date Month Number Month Name Year \n", "0 32370.00 16185.0 16185.00 2014-01-01 1 January 2014 \n", "1 26420.00 13210.0 13210.00 2014-01-01 1 January 2014 \n", "2 32670.00 21780.0 10890.00 2014-06-01 6 June 2014 \n", "3 13320.00 8880.0 4440.00 2014-06-01 6 June 2014 \n", "4 37050.00 24700.0 12350.00 2014-06-01 6 June 2014 \n", ".. ... ... ... ... ... ... ... \n", "695 631125.00 618750.0 12375.00 2014-03-01 3 March 2014 \n", "696 139230.00 136500.0 2730.00 2014-10-01 10 October 2014 \n", "697 8139.60 6840.0 1299.60 2014-02-01 2 February 2014 \n", "698 4301.85 3615.0 686.85 2014-04-01 4 April 2014 \n", "699 18421.20 5418.0 13003.20 2014-05-01 5 May 2014 \n", "\n", "[700 rows x 16 columns]" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_excel(os.path.join('files','Sample.xlsx'))" ] }, { "cell_type": "code", "execution_count": 20, "id": "256984fd-96cb-4bd6-a910-2e57f632fd16", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dateGOOGAAPLAMZNFBNFLXMSFT
02018-01-011.0000001.0000001.0000001.0000001.0000001.000000
12018-01-081.0181721.0119431.0618810.9599681.0535261.015988
22018-01-151.0320081.0197711.0532400.9702431.0498601.020524
32018-01-221.0667830.9800571.1406761.0168581.3076811.066561
42018-01-291.0087730.9171431.1633741.0183571.2735371.040708
........................
1002019-12-021.2162801.5469141.4250611.0759971.4636411.720717
1012019-12-091.2228211.5722861.4326601.0388551.4214961.752239
1022019-12-161.2244181.5968001.4534551.1040941.6043621.784896
1032019-12-231.2265041.6560001.5212261.1137281.5671701.802472
1042019-12-301.2130141.6780001.5033601.0984751.5408831.788185
\n", "

105 rows × 7 columns

\n", "
" ], "text/plain": [ " date GOOG AAPL AMZN FB NFLX MSFT\n", "0 2018-01-01 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000\n", "1 2018-01-08 1.018172 1.011943 1.061881 0.959968 1.053526 1.015988\n", "2 2018-01-15 1.032008 1.019771 1.053240 0.970243 1.049860 1.020524\n", "3 2018-01-22 1.066783 0.980057 1.140676 1.016858 1.307681 1.066561\n", "4 2018-01-29 1.008773 0.917143 1.163374 1.018357 1.273537 1.040708\n", ".. ... ... ... ... ... ... ...\n", "100 2019-12-02 1.216280 1.546914 1.425061 1.075997 1.463641 1.720717\n", "101 2019-12-09 1.222821 1.572286 1.432660 1.038855 1.421496 1.752239\n", "102 2019-12-16 1.224418 1.596800 1.453455 1.104094 1.604362 1.784896\n", "103 2019-12-23 1.226504 1.656000 1.521226 1.113728 1.567170 1.802472\n", "104 2019-12-30 1.213014 1.678000 1.503360 1.098475 1.540883 1.788185\n", "\n", "[105 rows x 7 columns]" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_excel(os.path.join('files','Sample.xlsx'),sheet_name='Sheet2')" ] }, { "cell_type": "code", "execution_count": 21, "id": "6fb38fe7-5a25-486e-a3b9-26b999cb6164", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'Sheet1': Segment Country Product Discount Band \\\n", " 0 Government Canada Carretera None \n", " 1 Government Germany Carretera None \n", " 2 Midmarket France Carretera None \n", " 3 Midmarket Germany Carretera None \n", " 4 Midmarket Mexico Carretera None \n", " .. ... ... ... ... \n", " 695 Small Business France Amarilla High \n", " 696 Small Business Mexico Amarilla High \n", " 697 Government Mexico Montana High \n", " 698 Government Canada Paseo High \n", " 699 Channel Partners United States of America VTT High \n", " \n", " Units Sold Manufacturing Price Sale Price Gross Sales Discounts \\\n", " 0 1618.5 3 20 32370.0 0.00 \n", " 1 1321.0 3 20 26420.0 0.00 \n", " 2 2178.0 3 15 32670.0 0.00 \n", " 3 888.0 3 15 13320.0 0.00 \n", " 4 2470.0 3 15 37050.0 0.00 \n", " .. ... ... ... ... ... \n", " 695 2475.0 260 300 742500.0 111375.00 \n", " 696 546.0 260 300 163800.0 24570.00 \n", " 697 1368.0 5 7 9576.0 1436.40 \n", " 698 723.0 10 7 5061.0 759.15 \n", " 699 1806.0 250 12 21672.0 3250.80 \n", " \n", " Sales COGS Profit Date Month Number Month Name Year \n", " 0 32370.00 16185.0 16185.00 2014-01-01 1 January 2014 \n", " 1 26420.00 13210.0 13210.00 2014-01-01 1 January 2014 \n", " 2 32670.00 21780.0 10890.00 2014-06-01 6 June 2014 \n", " 3 13320.00 8880.0 4440.00 2014-06-01 6 June 2014 \n", " 4 37050.00 24700.0 12350.00 2014-06-01 6 June 2014 \n", " .. ... ... ... ... ... ... ... \n", " 695 631125.00 618750.0 12375.00 2014-03-01 3 March 2014 \n", " 696 139230.00 136500.0 2730.00 2014-10-01 10 October 2014 \n", " 697 8139.60 6840.0 1299.60 2014-02-01 2 February 2014 \n", " 698 4301.85 3615.0 686.85 2014-04-01 4 April 2014 \n", " 699 18421.20 5418.0 13003.20 2014-05-01 5 May 2014 \n", " \n", " [700 rows x 16 columns],\n", " 'Sheet2': date GOOG AAPL AMZN FB NFLX MSFT\n", " 0 2018-01-01 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000\n", " 1 2018-01-08 1.018172 1.011943 1.061881 0.959968 1.053526 1.015988\n", " 2 2018-01-15 1.032008 1.019771 1.053240 0.970243 1.049860 1.020524\n", " 3 2018-01-22 1.066783 0.980057 1.140676 1.016858 1.307681 1.066561\n", " 4 2018-01-29 1.008773 0.917143 1.163374 1.018357 1.273537 1.040708\n", " .. ... ... ... ... ... ... ...\n", " 100 2019-12-02 1.216280 1.546914 1.425061 1.075997 1.463641 1.720717\n", " 101 2019-12-09 1.222821 1.572286 1.432660 1.038855 1.421496 1.752239\n", " 102 2019-12-16 1.224418 1.596800 1.453455 1.104094 1.604362 1.784896\n", " 103 2019-12-23 1.226504 1.656000 1.521226 1.113728 1.567170 1.802472\n", " 104 2019-12-30 1.213014 1.678000 1.503360 1.098475 1.540883 1.788185\n", " \n", " [105 rows x 7 columns]}" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_excel(os.path.join('files','Sample.xlsx'),sheet_name=None)" ] }, { "cell_type": "code", "execution_count": 22, "id": "05f509a0-bd8e-445e-b5f3-efda30ca2229", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0123456789...20212223242526272829
00.9017420.8684020.6267510.8055170.7023260.6358250.0817780.3702030.1199130.797300...0.9073350.2422100.8601110.7646270.2437720.7447850.9449230.9918020.7750390.412386
10.4914260.5844460.5250930.7194660.7652940.3686400.4392170.1307380.2025880.948425...0.4696630.9900040.8643320.7686230.4517350.6772810.0160030.7330190.4390450.404881
20.7988830.8216520.3902410.3761690.8096370.4851910.5357430.9615060.3337990.040235...0.5973630.1632900.5511830.1107270.1801190.1882640.3098360.1291190.2339580.301704
30.3742810.0254600.4667510.8113960.4702980.6851140.7951390.3751380.7087360.113676...0.9160640.6630300.2302420.6241920.4078150.7406650.5046510.0218960.2355940.978403
40.2604910.1773770.9628630.1338290.7163510.5579460.9079130.8721780.2568270.723024...0.4165170.8455540.0016610.0009410.2050840.3273110.0657500.4620680.8002270.652551
..................................................................
950.3845750.8082330.4102930.5464780.3635100.5507520.8654330.2639300.0894050.020224...0.6342560.4885200.6829690.9645610.8996040.3784230.6442920.6772580.3532080.098977
960.9722650.8556080.4318200.8877290.0954470.0136350.0053690.0537940.9477600.156041...0.9147260.6404680.5279570.2779130.4293370.5894270.6093760.7019990.2742530.105528
970.4430130.0705440.1899250.0318600.7060690.6787590.6083660.0907160.6446790.498870...0.6858920.8903870.8888980.4435870.0186280.5490220.6423240.4792540.0507970.228636
980.0775680.9495010.4852720.5787400.4993800.3270190.3438150.8742370.2948090.293207...0.7652150.0997790.9449320.6469780.5658450.9615220.0429990.7458510.0701180.014579
990.1553760.9577720.8175450.0874010.6925980.4680970.9130080.5675780.2473930.620830...0.3924560.2608100.9127240.1795380.3635430.8104100.2923060.1956550.6230250.853659
\n", "

100 rows × 30 columns

\n", "
" ], "text/plain": [ " 0 1 2 3 4 5 6 \\\n", "0 0.901742 0.868402 0.626751 0.805517 0.702326 0.635825 0.081778 \n", "1 0.491426 0.584446 0.525093 0.719466 0.765294 0.368640 0.439217 \n", "2 0.798883 0.821652 0.390241 0.376169 0.809637 0.485191 0.535743 \n", "3 0.374281 0.025460 0.466751 0.811396 0.470298 0.685114 0.795139 \n", "4 0.260491 0.177377 0.962863 0.133829 0.716351 0.557946 0.907913 \n", ".. ... ... ... ... ... ... ... \n", "95 0.384575 0.808233 0.410293 0.546478 0.363510 0.550752 0.865433 \n", "96 0.972265 0.855608 0.431820 0.887729 0.095447 0.013635 0.005369 \n", "97 0.443013 0.070544 0.189925 0.031860 0.706069 0.678759 0.608366 \n", "98 0.077568 0.949501 0.485272 0.578740 0.499380 0.327019 0.343815 \n", "99 0.155376 0.957772 0.817545 0.087401 0.692598 0.468097 0.913008 \n", "\n", " 7 8 9 ... 20 21 22 23 \\\n", "0 0.370203 0.119913 0.797300 ... 0.907335 0.242210 0.860111 0.764627 \n", "1 0.130738 0.202588 0.948425 ... 0.469663 0.990004 0.864332 0.768623 \n", "2 0.961506 0.333799 0.040235 ... 0.597363 0.163290 0.551183 0.110727 \n", "3 0.375138 0.708736 0.113676 ... 0.916064 0.663030 0.230242 0.624192 \n", "4 0.872178 0.256827 0.723024 ... 0.416517 0.845554 0.001661 0.000941 \n", ".. ... ... ... ... ... ... ... ... \n", "95 0.263930 0.089405 0.020224 ... 0.634256 0.488520 0.682969 0.964561 \n", "96 0.053794 0.947760 0.156041 ... 0.914726 0.640468 0.527957 0.277913 \n", "97 0.090716 0.644679 0.498870 ... 0.685892 0.890387 0.888898 0.443587 \n", "98 0.874237 0.294809 0.293207 ... 0.765215 0.099779 0.944932 0.646978 \n", "99 0.567578 0.247393 0.620830 ... 0.392456 0.260810 0.912724 0.179538 \n", "\n", " 24 25 26 27 28 29 \n", "0 0.243772 0.744785 0.944923 0.991802 0.775039 0.412386 \n", "1 0.451735 0.677281 0.016003 0.733019 0.439045 0.404881 \n", "2 0.180119 0.188264 0.309836 0.129119 0.233958 0.301704 \n", "3 0.407815 0.740665 0.504651 0.021896 0.235594 0.978403 \n", "4 0.205084 0.327311 0.065750 0.462068 0.800227 0.652551 \n", ".. ... ... ... ... ... ... \n", "95 0.899604 0.378423 0.644292 0.677258 0.353208 0.098977 \n", "96 0.429337 0.589427 0.609376 0.701999 0.274253 0.105528 \n", "97 0.018628 0.549022 0.642324 0.479254 0.050797 0.228636 \n", "98 0.565845 0.961522 0.042999 0.745851 0.070118 0.014579 \n", "99 0.363543 0.810410 0.292306 0.195655 0.623025 0.853659 \n", "\n", "[100 rows x 30 columns]" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.DataFrame(np.random.rand(100,30))\n", "df" ] }, { "cell_type": "code", "execution_count": 23, "id": "5154a714-0a30-4fbd-91d4-ac4f59e9176c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
01234567891011121314151617181920212223242526272829
00.9017420.8684020.6267510.8055170.7023260.6358250.0817780.3702030.1199130.7973000.8133930.2175970.0759910.6410110.1525530.3989290.4127470.4959720.4269230.0573310.9073350.2422100.8601110.7646270.2437720.7447850.9449230.9918020.7750390.412386
10.4914260.5844460.5250930.7194660.7652940.3686400.4392170.1307380.2025880.9484250.5677720.1988780.9248950.7897980.0679760.2269430.2506480.1100830.0863270.9858330.4696630.9900040.8643320.7686230.4517350.6772810.0160030.7330190.4390450.404881
20.7988830.8216520.3902410.3761690.8096370.4851910.5357430.9615060.3337990.0402350.5906490.9481390.1973140.4296420.0525090.6859620.0185000.4243010.0384590.4361080.5973630.1632900.5511830.1107270.1801190.1882640.3098360.1291190.2339580.301704
30.3742810.0254600.4667510.8113960.4702980.6851140.7951390.3751380.7087360.1136760.0437670.7698430.9714430.9608000.1831160.5503050.3006160.9361780.3844960.6702160.9160640.6630300.2302420.6241920.4078150.7406650.5046510.0218960.2355940.978403
40.2604910.1773770.9628630.1338290.7163510.5579460.9079130.8721780.2568270.7230240.4416350.9607450.7036100.9002180.1291430.6918400.5293850.2253850.3149350.6635220.4165170.8455540.0016610.0009410.2050840.3273110.0657500.4620680.8002270.652551
50.8233920.5427350.6477650.8111170.8245980.8124420.7902740.6057020.2579090.9932470.5688170.6833650.0866230.7482510.1451870.9569250.7097130.9789720.3911860.7788530.6443580.6157740.0384270.2410940.9112060.9187500.0522650.4024190.6072830.789062
60.1745820.8148480.6070360.4187190.9071480.0895900.5711280.9033980.9221320.0583660.2908220.7269430.4656820.6290000.3336650.2701130.5153320.9773820.6115640.9136860.2965900.2097120.8348070.6737490.3879520.1857580.1497720.8654470.8648380.734848
70.5467910.7075280.9797130.1074820.5934300.5289180.5907530.1980780.6267470.2621340.9555150.9830840.0698400.6549700.2579810.9363300.2944640.0373390.5275340.7023980.1196930.4669010.0708170.5265810.1086490.4446280.9186430.2181610.6286020.562219
80.1528910.8708280.0520700.9435430.2037080.0191660.7161200.5396090.1081310.3390620.6251370.6457380.4689160.0604780.5629370.1333180.1679320.5084970.1809760.7545200.7613750.0603830.7810940.3847020.3677870.5430030.6187570.4591200.7523810.280349
90.6220800.2706360.9064980.0233140.6768990.6115770.5682190.3050850.8162390.9346620.2161220.8231900.6117200.6535410.4238220.8870000.0393150.6775460.4318330.4095280.8847980.7286130.3706780.9773020.5816060.1252680.1967060.3880350.9426820.059056
100.8464890.2697080.9709020.6719150.9924660.2505540.6077630.7244240.3153790.6344370.9153850.4697050.2807370.0529870.4574300.1696070.3214970.6523580.3006340.9037970.5150730.0281710.4254260.6034900.7165130.1234980.2226290.9102370.0867220.716075
110.0699330.1285610.7875350.3657450.7790970.9202800.2465730.2353440.6609980.5149380.9736010.1316410.3729020.2420420.6205400.3478470.0799310.2127040.5388530.4321210.0699970.8660020.5419570.3277620.0509880.5854960.3109730.0049990.8204430.345355
120.0623340.9232800.0035890.4784700.5282310.1957630.2260640.2688280.3166190.2695070.7632870.6321140.7505550.2991160.7481780.3199810.5818720.2390440.0944530.5840660.2102300.0436570.7240760.4285750.1800190.8775760.0832570.4583460.0534510.315931
130.4430190.2898860.7888400.7019720.9522040.3289080.0094260.6782610.6318140.3045500.5150210.0816050.2934760.0861110.2115820.8049690.4046490.6432640.9164440.2283470.4461080.3810730.7616290.7225890.7410400.8352290.2585410.2877850.1464480.003330
140.8080680.0188730.1540600.1937370.0916140.0327280.8088920.3361930.5732630.5383650.5948550.4336570.3344720.0577970.9486070.9672950.1516420.3508970.9511020.9604970.0800810.0987570.1850770.5119180.2377070.1425280.8914380.8069990.3233600.913913
150.5031160.2776350.0653550.5638140.1890820.4208350.5228770.8586070.5556330.6804930.2330000.5181500.3285730.4898020.7268060.0055900.7378150.5910440.2765520.8760430.8993430.4891910.0089640.4884790.8079090.8781330.2574540.5748650.3368750.647768
160.7430840.3792640.5843800.7373560.4600580.8634270.4870500.6936260.1115140.0010770.6059500.8661330.9244390.0166700.0388900.3301940.9050490.0533230.3792760.4770700.8852850.2943060.7288700.0362880.1172580.1628360.0966970.6972090.3546970.083038
170.0578540.4741640.3820570.9878580.8705240.4863250.0398460.6530200.5731960.9126330.5597410.0477610.2707660.6259910.7646650.9888110.8708730.8178410.2664300.9019220.2722970.3429660.6300570.1164160.9273700.8916000.1237070.0870930.5745800.721992
180.4312810.8632770.5373590.0313530.6451970.5956680.2094430.7093570.4974870.3490760.2815470.9897050.2848790.6748230.6613770.6267450.3428370.1745440.6993210.7371720.5315180.3093450.3822860.2596820.1622190.1372750.1228080.1944120.0874580.385799
190.9441370.4849560.6943140.5963880.4968050.0660820.3477980.1282900.9000640.8896170.9289610.3149740.1874340.3493620.6253880.2243590.8288810.3658290.3711480.5351260.6968720.3074740.3601110.7774040.5278580.6583110.8744420.3173690.9367010.993278
200.3686920.8464030.1068160.0748080.4191440.9218830.7348160.6784680.1611620.7817230.1976790.3666910.6963980.5954070.2280140.6593680.0700100.1990050.4957250.4758170.7522580.1138580.7798350.7901920.2480750.9678840.3931300.4738830.6729190.256158
210.2140980.0870490.8518420.2531890.3801280.8450020.3308600.2834670.6640880.1034560.3989250.4985810.6735130.9927550.8976780.0764250.2771400.8047020.6238250.3254230.0030880.4737700.3804030.5397620.2644760.6509520.7189060.0974100.0479930.879046
220.0200780.5685700.0678350.5759390.4214780.9462980.9498490.3799180.5035420.8295830.0307640.7952980.2138980.2003040.3511450.9005160.1895230.6642090.1290830.9352040.9472820.8910380.7703400.1797730.1041210.7419330.0256900.4772180.0809340.912208
230.6014330.2848350.6678520.1497450.0017360.2467490.9941820.5744760.9589630.2825990.1195730.3941540.4756980.0966170.7504270.3142510.9186000.2448720.8877660.8444120.4964080.5764940.4451710.7587140.9446540.5320300.1372410.0877480.3726290.617857
240.4672580.7093650.1239570.9455700.8348500.9759760.6471200.2795840.5349380.6407140.8631600.4143320.9148830.9054260.6698270.7401100.0462680.2575670.4120650.9719920.0592960.4746890.6675310.6166850.4244210.1845100.4044270.1260290.9817090.962642
250.7159920.5084470.4862000.5175120.3223490.1500000.5953250.4665490.6817840.5108650.3418960.6420110.1940030.1761360.6785550.8954940.6935780.2690540.0020120.7687280.6780230.4639720.5347150.7203190.9180270.4050740.0527090.7516590.7903490.240731
260.9622000.5239420.0836450.9014340.3060390.5960290.7375120.2138620.1607080.7714910.4035300.7288810.8854510.3349110.9572750.4065420.1040490.8464590.1214040.6782920.2534610.7514060.1644450.4701350.7548150.8117790.2449660.0352920.0595340.939546
270.5684610.4438970.2117430.4594220.3583080.6432050.6477450.2451070.0899820.9241440.3522910.4009140.6019270.4759800.5836490.5381650.6934370.5627410.9572710.0175630.5098510.9711990.3130720.8703920.4092450.1663890.4700590.3333680.8272560.856752
280.9355240.2049260.2955050.7533110.2854460.0203900.1795620.0490650.5075030.0910440.3333230.6754670.1020590.0418110.3913930.1947220.5139640.4541840.6071150.1542610.4213480.9164960.6131310.6008330.0293960.1497430.7512590.3513600.4170760.902869
290.7171750.0269090.2296670.7720010.1869790.4308980.1228850.7726870.5407770.7087600.6616360.5932980.2120510.4234000.8361890.2088180.1232210.5894200.7406860.3886350.7719730.0014480.7594210.8893950.7140990.6094900.1952000.2394850.6049570.709172
300.5990740.5819760.5653950.9407810.0562250.9329200.2415150.5881690.3466670.6108600.8010800.9523610.5025630.9280130.2351490.9093070.1108220.1910690.6480900.1936600.6140830.6929710.2393370.5028090.9061740.8442010.5018410.1094950.8612900.055246
310.8376640.8133860.1416120.7598890.9260930.9744890.1438510.5842970.5453080.3452720.1353850.3822120.3527260.1005840.4117450.3217780.8410840.1775300.5663230.6907290.6905650.9885130.9489810.6815990.6643790.4091030.4945280.3193560.3289640.072510
320.5547580.4194510.5437100.5441090.6582080.3300850.0130480.6444290.9230940.0771200.9180750.9737800.3653850.4280360.8761100.4464920.4528660.6048910.3796220.8814050.1066890.8979570.3359400.4564640.7736850.8633200.2787940.6213840.1323590.765531
330.3286710.6165720.2024180.7516400.1351470.8287030.2474790.9632460.0279380.9107380.4252650.9536100.7370540.1627190.1091660.2039750.4911980.4945560.2941550.0933560.8860090.6136900.3829770.8040520.9137100.3168020.8176410.0475810.1323600.941529
340.4300540.6828270.3060240.2872190.2548850.5359790.2907700.5726010.1956100.0076940.6922150.0546140.2482070.8757810.6620570.5704550.9141220.7486970.3715300.7999240.1366840.3842120.9876600.2601410.2535540.1342560.4036240.7727290.7510160.953293
350.0689350.9533510.1008230.1034340.6253740.5713930.6827400.3516740.1984060.0915590.2618320.6901650.0567770.7382490.8604230.6376000.8140310.3773640.0903920.9247640.2557930.7895110.2961980.3301900.9219160.1374250.0979640.9769580.1401890.181310
360.9590740.8974190.7612850.9920350.6924150.2665610.0403560.8077380.5728420.8796410.5446790.5136760.9565650.3974840.5922110.5700910.4200310.0440400.5110310.3570370.2516770.5666120.2265260.6584190.4230450.8710500.0941070.1015320.5675800.283756
370.5971300.6241480.5583440.7477760.0650160.3107130.5343340.1896900.0190220.9189940.2333560.8407700.8208740.3597270.2043470.3541550.9108900.1073440.0787440.3900310.8622020.9342600.6867900.5579800.4274970.0150300.3896700.8079170.6346870.631037
380.5173670.9629520.1628870.2598690.1634470.2415990.2144750.7839700.4853790.0576900.7116980.5129550.3032630.3410970.6517950.0795690.5291970.6834290.8261750.2382000.8083940.5309800.5131320.3375170.5101150.3095390.0314130.2482830.1428240.487245
390.6242320.4247160.4944620.6002250.1598550.2204480.2666200.7112480.5515880.5553320.3895740.0357620.7481390.1118140.2864020.2826450.0429800.1093470.8635960.7460910.2056470.3652820.0824290.2745240.6615110.1933820.7719450.0054630.9845290.976142
400.2432420.3722090.1134410.6931340.9206670.9785260.9561370.0737480.9476950.0545740.6831550.1661600.6952410.6421800.6181300.3065920.0986410.6485120.4185180.2202900.4649260.0482910.4084380.1452090.5834490.9163060.9061060.2758510.0029570.525038
410.5869450.2133740.9525420.6551270.0590510.4440550.9009160.2550900.6076030.7184440.1763030.7599990.0656310.9864480.9287230.3252760.0398310.4524830.2701440.1420760.6914650.9007700.3123920.8662080.4859880.9578800.0745660.5351530.4212750.273299
420.4205710.1401190.1199360.7395820.9973310.1032350.3378970.9281010.2070180.5959810.3643070.8205000.1755220.4666590.1373560.8536240.0757360.6475290.2237410.6830860.6271550.9204800.3909630.9181740.9578560.9571330.5498800.1651990.5937120.517212
430.5091660.6980700.3158610.8050020.5750270.7514010.3387670.3943290.1306930.8081180.0363540.2149760.7629490.1700850.0170750.8592100.1309770.7012420.5860540.9464800.7344240.0870700.9167930.6039830.8068330.8663160.5502820.7912970.2727870.461349
440.2829740.7741600.4982510.5706950.7149480.1426790.5834100.6132720.2715410.9967450.3016160.9130210.2968110.1394090.5933370.2843430.4887940.4530340.5615900.4885890.5268060.3563440.6330750.3765310.1040570.5473910.6814210.6000350.2445550.876272
450.7057200.9617510.3805800.8542920.0168620.2218510.0437050.7665650.1218750.1835910.4924430.2451810.6958670.4124790.7634730.3640360.9334940.9885410.8521330.7812880.0726850.3566540.5717310.6852330.2829820.5205510.6129570.2345160.8601840.896478
460.3409380.9143390.0847330.0538650.4106850.0106440.0086100.3044270.9908450.3238710.0458160.2805530.8117840.9202720.2617990.6768820.1807540.9406330.4362000.3892450.4841000.3730680.0345190.6355540.2227460.6289880.0656180.8338960.6626830.816639
470.0465320.5145110.9901090.4948940.1622980.5003640.5422820.3605520.5369210.0032680.4182360.2367390.1898700.7973960.8302400.7682340.3330110.7087660.3053810.0894230.3081470.8625520.7352220.9314280.6221750.1000530.6045390.7800600.9624110.588523
480.9893760.1238020.4809650.0637890.0296740.0282770.0427330.6266470.8355090.5791230.8607740.5767120.5951980.6867060.7667770.6777000.6024080.5395860.3719170.1072160.4831000.8514760.6515230.6022010.5900900.4214860.3049770.9772400.5143930.048044
490.1560100.4598780.1505160.3830260.5210090.6240120.6005920.2070300.4221990.2013120.0938530.1894200.7473560.4843390.0868780.2076870.7528010.3609020.9832700.0956830.2148670.1710130.1441470.7113070.6648050.8238240.5359890.1876240.2171890.570282
500.2935430.2711260.6571920.5004180.8704550.0152880.1011340.4861610.6909410.7542610.3600240.1338270.2176850.8909110.8052640.7616860.4829250.8734970.7902040.6919190.1133170.9016300.2056420.3472380.8503240.4323530.2220600.2983830.6647750.958049
510.9036220.1628090.4030620.8720350.1917510.3650480.7601810.0050050.2349190.0231120.6443160.2348620.6368490.5700680.5333100.6388620.9826520.3706070.9044830.7329980.4234710.9004750.0035700.2463370.8193770.4016500.1154490.3082610.6129410.870673
520.9814550.4221500.5926270.1645210.9465190.9016410.5708650.3360330.6664650.2031080.8366980.6183700.3118640.6582740.2703830.2272600.7395820.0091750.2859890.5213150.7599340.8012890.6502900.8247960.5046380.3046500.9252070.3939550.1996140.361320
530.9535750.9223370.8848060.2995520.6792890.7118890.4409710.0737670.3815410.6858770.3899580.7862280.0378240.3998110.6625790.4241860.3036610.2541120.5831940.8467970.5311350.8386160.1700240.3003550.3812370.9975200.2479930.9545180.2203930.734893
540.2582290.0733060.9518040.8852900.7881270.7197230.3996760.6870570.6998590.1764590.2966520.5735880.5571190.0184520.1851570.3494150.1630490.3174880.3664200.5609230.7215190.5202320.3809210.1065500.9523230.1014390.3294740.3612270.6591530.464153
550.5493580.7102280.1781800.1523400.5287440.1984250.9387400.1600280.1506050.0717560.0556650.5192980.8649910.9577020.3829580.5991530.4513810.7843570.6232440.1357690.2896740.0746390.5482660.2086280.4765880.6363380.1044370.4225420.0981070.554296
560.6218050.5242720.2353120.5264350.6577050.2299330.2358470.2827530.8348840.1228540.8484910.7417380.4940870.3064130.8944120.1905500.9103160.3114510.8247210.5046280.3693160.7305500.2423830.6925890.5895900.3833860.4805400.7411650.8318090.777391
570.4590470.1502740.1226750.6764540.1907620.9834440.8589310.3743790.7856850.8953740.4229590.9444290.8174860.3651440.7124430.5801690.5826570.0230310.9744710.8862740.8968200.8291630.4173310.8817060.5825300.2184530.7879990.5227370.4692070.630730
580.9038820.5769070.3441770.6044320.4906610.7664320.4130660.1276370.4577780.8982170.1985000.1016090.7559220.1260970.5946240.4493570.6525510.4877310.7393200.7512770.6682560.0699560.2989450.5571590.7552930.1525690.7648850.1461850.8861090.499044
590.5618930.5970080.2555840.3225070.8796460.7082220.3112140.0546580.3064040.3528010.2072210.1310200.8941500.7368930.0363220.8290560.0018740.7669040.1077450.1812010.2092870.7043930.4668900.7715730.6572760.7625350.4157380.8024900.5182600.679503
600.8882630.0056250.0892160.1130070.2203970.8107210.1527070.3384530.3772450.0893140.8403490.4187880.2872380.3566390.7321290.0214480.5747840.1210790.4462760.8494350.0417340.8804500.6838430.7233140.6653750.9948920.8082500.5915500.0274590.750605
610.1100960.2517650.7934280.4308330.8619210.6636570.4010120.0576240.6171710.5857090.9528630.0891090.3962580.5140580.0241910.3286540.7174380.0223650.1425730.2058860.6474880.5247210.1939660.6230700.0796150.8352740.7589160.6442620.8005940.906065
620.3730950.6743680.0066260.5318280.1033630.2242120.4482030.6916980.3729250.2629140.0245160.1223730.3117200.3823940.4097250.7292990.2683470.2298040.1505510.4265950.2403040.9114770.6096290.1141630.6331150.9414670.5564310.5974300.2690050.758348
630.4427770.0004700.3493220.8476180.2167120.3933090.6583650.2327680.7888100.5113100.2951380.5427900.6365880.7795740.9595930.7787050.3651910.3985980.2501330.6697200.0688320.1500540.6999380.3672870.5806410.1912050.1072150.0325950.3797730.619523
640.5306680.3764670.3385220.3515870.3923770.2913800.2412660.4302500.8049300.3268780.8673270.4965490.5436690.9300880.1943470.2091620.6039910.0737870.4357400.9689150.0475230.0449490.0559820.4647820.1853070.6890030.2360080.7719770.7512890.392166
650.1689310.9140290.3096460.3268020.0682190.3790850.0494380.5944260.1625370.1632920.3960390.3139970.1513140.2312370.8347220.9397170.4691840.5782520.1235640.6562030.2125900.8201150.0521820.2670620.1241910.4306000.4462720.7790730.7905160.533594
660.9694930.0846860.8264820.1084480.5697220.6171120.6460650.1615390.7309310.9409650.9508320.5381840.8729050.2071830.5865540.1856400.4610270.6020140.7245570.8863360.0992790.9520100.3618440.7467980.2482780.0970810.4990070.0158860.4890820.985338
670.3410850.5565420.2290910.5247270.3677170.7498180.0472640.9525030.2449250.7480860.9758040.2420860.4159570.2715730.3160280.6146130.3032370.1631300.1968340.9064920.2629820.3869600.3821680.0863920.1412700.2826430.3960200.1783280.8564210.458342
680.0287080.4633750.1491760.2024380.7634280.5623480.5570110.8400890.4188430.0506860.9080200.9043730.7647530.9965860.1824550.0332500.8595880.0852200.6753550.9250790.5495170.1170690.1831750.5307030.5095790.6720340.3196760.7829810.0143280.609038
690.7831150.8000460.8838430.8839930.2286330.8237030.7178800.8976090.4043780.0217060.6183710.9065550.4062280.3997420.0428350.9128310.3959440.2719270.6285040.1743630.7981520.9440910.4854620.3055340.1958400.3730590.8157200.1457450.8602310.946066
700.9736980.7260400.6399230.3161960.4942020.5366260.4082890.2275560.4548840.7377260.5186110.3413620.0551670.1622600.9719130.7426340.5692800.9634950.5262620.4637550.1764240.2815260.0216930.2137610.2199880.4355270.4493570.7590420.0594540.882776
710.7820990.6851170.0258720.3344920.3736830.4776410.5682150.7791460.0719950.7852260.7127950.3800590.1005390.8065840.8561950.1904670.5245090.9233880.8855870.1424000.0682740.5515410.3246170.0486290.1054590.4276340.1786080.0791040.3385190.832808
720.3322450.6095120.7072630.8157130.7935090.7215220.9233660.0417240.1653070.6913480.3162370.7999910.9554820.3253810.2241910.2241400.0391970.7962390.6917520.2709120.2231030.4282640.7397400.7502240.0909910.5103900.0781460.0735640.5687270.106031
730.4005450.7627770.7385630.7370750.3360470.9321910.8017160.2875100.5526540.7020030.5387190.9641240.1938550.2867520.9568750.1724070.4694830.5876020.2160500.1979440.7535920.4428880.6997120.6567690.8825940.3813290.8466690.3018970.0162700.811660
740.0885810.1709160.0085250.2029780.2716900.5941540.7800430.8103230.8070030.6381730.9462880.3300720.6873790.2450100.6526270.5832660.9261750.6992270.3905550.7077150.1973710.1834500.7280870.4129850.0125700.9351670.0373560.6932280.1918600.630727
750.2176850.3329070.2536830.1676370.7122480.3346690.6694540.5664330.5517530.9497880.1991110.1869710.9251380.4298490.1001180.2452100.0058380.3288560.4727780.7029470.7848640.9075870.4981850.6726590.6780850.2407700.3097630.5556300.9486220.561589
760.9536690.9365320.5193990.4074630.1246610.0322370.0573150.3244000.9183380.0787540.8708150.0382740.4581410.4903920.0618400.6019930.5810630.6789330.3947210.2031670.7039480.8847150.7433050.0929400.4625050.2213520.2372530.8766680.1646040.362618
770.3372160.1193930.1404070.3580660.4038490.1532710.0300570.6932850.9506510.2977380.4596320.6276020.5632930.0523280.7177530.5261540.6586060.0668900.0426960.2013340.6411330.3003640.8352790.3375580.3724960.0873970.9263160.4379870.8449320.575924
780.8677060.9608070.2925040.7825520.9230390.4485070.3679060.6684060.2139950.5966350.7113610.4732270.6241560.1646610.3550970.6352420.4691680.3125190.7924530.7118260.8252790.7907780.2628420.7749440.3230070.5903860.4582860.1180840.8232970.871790
790.4647120.6389160.5969110.4008700.3899240.4550200.7077600.2852010.2852240.7861040.5617440.7147900.1596620.7838530.7284610.4039960.0306460.3887620.7163700.0894140.1914470.4191900.3672810.3788810.4628890.8500730.1149630.4237170.2101870.802821
800.6406940.6527650.1720120.2387010.4353010.6323720.8356140.3400190.6242580.5964650.6185620.7150320.0095300.3299510.1136550.2534220.8196580.7601270.0496120.7482350.2764910.0791330.5976370.9765670.8627010.7536170.7151030.4182150.1680630.244866
810.5420740.4702070.3619130.4989200.5958390.5600500.1844790.1045790.0685420.0129310.8752950.6875440.6164320.7501810.8419430.9829290.7701400.0484830.0054120.0172920.3914930.4208230.8913020.5973120.4891330.6728350.9792830.4230830.4508520.491330
820.4468990.9569430.4215120.6719730.4934860.7061590.8118370.9886420.6535120.6581200.0128550.7448780.3504150.9844970.5538890.0722740.2305620.9855260.3417840.3412560.9267180.3745520.8158790.0876530.0627920.4415710.3815810.6536220.6380200.639932
830.0467570.0935150.9787050.0731930.0871440.6282220.2376860.2023460.4553850.4533860.5588330.8998200.1294530.2302350.9126130.7257890.1917050.5218360.1692670.2344000.6970580.4003300.5170420.0107850.1806240.3714300.3921930.5815740.6648300.846698
840.1923860.2323440.3901920.8281450.7936340.7490960.8108830.7003070.3077480.4830950.0578440.0166030.3184740.9590700.7692950.7942400.3659780.8759390.6883640.3406010.7497070.8552070.4379580.2025830.5860470.2233680.1786670.0942660.6767570.813497
850.1466290.9757540.1975360.4085970.1939250.3091730.3313680.2969800.3825610.9574890.2543950.2504400.4262250.1066390.0942970.5793620.3005330.4168600.5266110.4934740.4469170.7029930.2027140.8006840.5819900.8325570.6810880.5295950.7115960.172003
860.9737640.7685620.2149840.8915700.0522260.5686260.2031270.9067100.8276210.9942040.9690080.4189480.3426150.2516540.2662120.6821230.5464890.0056420.3807820.0244470.7104050.9633740.0028510.2781260.3033190.3827810.2282940.1177180.9589120.984522
870.9359580.1129510.5037380.0309380.0207050.2195860.6971790.5239620.7389860.3065750.2083500.5187360.2527320.3178120.3727130.9955370.9179490.9288220.6221030.8680680.0781600.4286510.1488820.1948530.3296010.4551930.1344630.7396010.1439920.522306
880.5031410.2910310.2998870.0886150.8261930.6942640.0483980.2052660.5797570.2987200.1760490.3703530.8856040.4558930.6922770.9774510.9775670.3233520.2700290.9992810.2020910.0668180.1370340.2489640.4905710.5534260.8391730.1399450.8494520.852110
890.5172430.1512220.6254200.0266520.1790420.8665070.3057810.3795150.7526130.8808880.7286550.1986750.5638170.3315990.7936690.2742650.6642100.4183470.7841370.4722540.8376490.7145940.1274570.1510640.8446100.2811060.3086810.8313630.9409270.396301
900.2465510.4109890.1825480.7103850.5259710.1874290.6251250.5739440.8980570.2958710.4554650.7990770.8249620.3099850.2844360.6794480.6773390.0310580.3426120.7122200.8007660.7751040.7667490.3918960.9540930.7419520.7353550.9705870.6739590.839634
910.2811040.2080510.3000650.5596280.0808850.4891820.6771720.0787780.0749300.6100050.1362300.2933130.7486960.4831370.1610820.7333070.8355050.1109340.4481790.3677030.8441460.4903360.6896660.9006230.2786270.4913770.7132100.2462500.4722590.313519
920.2022050.2228820.8366380.1887450.5265110.1429760.9327100.4770660.5599190.0612310.2768690.0892550.7498840.2234530.3309660.7524820.1117780.2333220.2250390.8149700.6697040.7846070.9800030.0741850.5033690.6144540.1298760.0744440.0355470.263580
930.3653280.0670160.2604790.8339270.1742710.3280660.1209530.9864260.3739580.9542890.6840580.4964190.8490280.0332970.0511170.3948290.0848700.7059260.1053780.4248050.7369450.3848840.6274060.1012510.8976780.5665620.9518900.4901940.7819950.407303
940.0999170.9729600.2485630.9397090.2785450.8747840.6238810.2548950.6997700.2804490.7993730.3760130.6683930.4474900.2096830.9798500.5717840.2257370.0294670.7915150.9522700.5566150.6397640.1613420.6695790.1221200.3851660.9698150.0614090.089618
950.3845750.8082330.4102930.5464780.3635100.5507520.8654330.2639300.0894050.0202240.4487280.3796920.1230620.8438330.5356870.5534920.7434390.8970550.9038190.4609310.6342560.4885200.6829690.9645610.8996040.3784230.6442920.6772580.3532080.098977
960.9722650.8556080.4318200.8877290.0954470.0136350.0053690.0537940.9477600.1560410.5330090.1262800.8469320.6986380.2081580.5022040.8041670.6631620.2729530.8391970.9147260.6404680.5279570.2779130.4293370.5894270.6093760.7019990.2742530.105528
970.4430130.0705440.1899250.0318600.7060690.6787590.6083660.0907160.6446790.4988700.7688180.3851970.4770380.3311510.8500540.6892410.0253370.0809790.7757690.0415050.6858920.8903870.8888980.4435870.0186280.5490220.6423240.4792540.0507970.228636
980.0775680.9495010.4852720.5787400.4993800.3270190.3438150.8742370.2948090.2932070.9722750.6662160.3615700.4105360.7105390.5047750.4347450.5027460.2289160.5160330.7652150.0997790.9449320.6469780.5658450.9615220.0429990.7458510.0701180.014579
990.1553760.9577720.8175450.0874010.6925980.4680970.9130080.5675780.2473930.6208300.1992350.9894520.1605330.2693490.6347140.7099570.6372650.8719480.8663600.1759040.3924560.2608100.9127240.1795380.3635430.8104100.2923060.1956550.6230250.853659
\n", "
" ], "text/plain": [ " 0 1 2 3 4 5 6 \\\n", "0 0.901742 0.868402 0.626751 0.805517 0.702326 0.635825 0.081778 \n", "1 0.491426 0.584446 0.525093 0.719466 0.765294 0.368640 0.439217 \n", "2 0.798883 0.821652 0.390241 0.376169 0.809637 0.485191 0.535743 \n", "3 0.374281 0.025460 0.466751 0.811396 0.470298 0.685114 0.795139 \n", "4 0.260491 0.177377 0.962863 0.133829 0.716351 0.557946 0.907913 \n", "5 0.823392 0.542735 0.647765 0.811117 0.824598 0.812442 0.790274 \n", "6 0.174582 0.814848 0.607036 0.418719 0.907148 0.089590 0.571128 \n", "7 0.546791 0.707528 0.979713 0.107482 0.593430 0.528918 0.590753 \n", "8 0.152891 0.870828 0.052070 0.943543 0.203708 0.019166 0.716120 \n", "9 0.622080 0.270636 0.906498 0.023314 0.676899 0.611577 0.568219 \n", "10 0.846489 0.269708 0.970902 0.671915 0.992466 0.250554 0.607763 \n", "11 0.069933 0.128561 0.787535 0.365745 0.779097 0.920280 0.246573 \n", "12 0.062334 0.923280 0.003589 0.478470 0.528231 0.195763 0.226064 \n", "13 0.443019 0.289886 0.788840 0.701972 0.952204 0.328908 0.009426 \n", "14 0.808068 0.018873 0.154060 0.193737 0.091614 0.032728 0.808892 \n", "15 0.503116 0.277635 0.065355 0.563814 0.189082 0.420835 0.522877 \n", "16 0.743084 0.379264 0.584380 0.737356 0.460058 0.863427 0.487050 \n", "17 0.057854 0.474164 0.382057 0.987858 0.870524 0.486325 0.039846 \n", "18 0.431281 0.863277 0.537359 0.031353 0.645197 0.595668 0.209443 \n", "19 0.944137 0.484956 0.694314 0.596388 0.496805 0.066082 0.347798 \n", "20 0.368692 0.846403 0.106816 0.074808 0.419144 0.921883 0.734816 \n", "21 0.214098 0.087049 0.851842 0.253189 0.380128 0.845002 0.330860 \n", "22 0.020078 0.568570 0.067835 0.575939 0.421478 0.946298 0.949849 \n", "23 0.601433 0.284835 0.667852 0.149745 0.001736 0.246749 0.994182 \n", "24 0.467258 0.709365 0.123957 0.945570 0.834850 0.975976 0.647120 \n", "25 0.715992 0.508447 0.486200 0.517512 0.322349 0.150000 0.595325 \n", "26 0.962200 0.523942 0.083645 0.901434 0.306039 0.596029 0.737512 \n", "27 0.568461 0.443897 0.211743 0.459422 0.358308 0.643205 0.647745 \n", "28 0.935524 0.204926 0.295505 0.753311 0.285446 0.020390 0.179562 \n", "29 0.717175 0.026909 0.229667 0.772001 0.186979 0.430898 0.122885 \n", "30 0.599074 0.581976 0.565395 0.940781 0.056225 0.932920 0.241515 \n", "31 0.837664 0.813386 0.141612 0.759889 0.926093 0.974489 0.143851 \n", "32 0.554758 0.419451 0.543710 0.544109 0.658208 0.330085 0.013048 \n", "33 0.328671 0.616572 0.202418 0.751640 0.135147 0.828703 0.247479 \n", "34 0.430054 0.682827 0.306024 0.287219 0.254885 0.535979 0.290770 \n", "35 0.068935 0.953351 0.100823 0.103434 0.625374 0.571393 0.682740 \n", "36 0.959074 0.897419 0.761285 0.992035 0.692415 0.266561 0.040356 \n", "37 0.597130 0.624148 0.558344 0.747776 0.065016 0.310713 0.534334 \n", "38 0.517367 0.962952 0.162887 0.259869 0.163447 0.241599 0.214475 \n", "39 0.624232 0.424716 0.494462 0.600225 0.159855 0.220448 0.266620 \n", "40 0.243242 0.372209 0.113441 0.693134 0.920667 0.978526 0.956137 \n", "41 0.586945 0.213374 0.952542 0.655127 0.059051 0.444055 0.900916 \n", "42 0.420571 0.140119 0.119936 0.739582 0.997331 0.103235 0.337897 \n", "43 0.509166 0.698070 0.315861 0.805002 0.575027 0.751401 0.338767 \n", "44 0.282974 0.774160 0.498251 0.570695 0.714948 0.142679 0.583410 \n", "45 0.705720 0.961751 0.380580 0.854292 0.016862 0.221851 0.043705 \n", "46 0.340938 0.914339 0.084733 0.053865 0.410685 0.010644 0.008610 \n", "47 0.046532 0.514511 0.990109 0.494894 0.162298 0.500364 0.542282 \n", "48 0.989376 0.123802 0.480965 0.063789 0.029674 0.028277 0.042733 \n", "49 0.156010 0.459878 0.150516 0.383026 0.521009 0.624012 0.600592 \n", "50 0.293543 0.271126 0.657192 0.500418 0.870455 0.015288 0.101134 \n", "51 0.903622 0.162809 0.403062 0.872035 0.191751 0.365048 0.760181 \n", "52 0.981455 0.422150 0.592627 0.164521 0.946519 0.901641 0.570865 \n", "53 0.953575 0.922337 0.884806 0.299552 0.679289 0.711889 0.440971 \n", "54 0.258229 0.073306 0.951804 0.885290 0.788127 0.719723 0.399676 \n", "55 0.549358 0.710228 0.178180 0.152340 0.528744 0.198425 0.938740 \n", "56 0.621805 0.524272 0.235312 0.526435 0.657705 0.229933 0.235847 \n", "57 0.459047 0.150274 0.122675 0.676454 0.190762 0.983444 0.858931 \n", "58 0.903882 0.576907 0.344177 0.604432 0.490661 0.766432 0.413066 \n", "59 0.561893 0.597008 0.255584 0.322507 0.879646 0.708222 0.311214 \n", "60 0.888263 0.005625 0.089216 0.113007 0.220397 0.810721 0.152707 \n", "61 0.110096 0.251765 0.793428 0.430833 0.861921 0.663657 0.401012 \n", "62 0.373095 0.674368 0.006626 0.531828 0.103363 0.224212 0.448203 \n", "63 0.442777 0.000470 0.349322 0.847618 0.216712 0.393309 0.658365 \n", "64 0.530668 0.376467 0.338522 0.351587 0.392377 0.291380 0.241266 \n", "65 0.168931 0.914029 0.309646 0.326802 0.068219 0.379085 0.049438 \n", "66 0.969493 0.084686 0.826482 0.108448 0.569722 0.617112 0.646065 \n", "67 0.341085 0.556542 0.229091 0.524727 0.367717 0.749818 0.047264 \n", "68 0.028708 0.463375 0.149176 0.202438 0.763428 0.562348 0.557011 \n", "69 0.783115 0.800046 0.883843 0.883993 0.228633 0.823703 0.717880 \n", "70 0.973698 0.726040 0.639923 0.316196 0.494202 0.536626 0.408289 \n", "71 0.782099 0.685117 0.025872 0.334492 0.373683 0.477641 0.568215 \n", "72 0.332245 0.609512 0.707263 0.815713 0.793509 0.721522 0.923366 \n", "73 0.400545 0.762777 0.738563 0.737075 0.336047 0.932191 0.801716 \n", "74 0.088581 0.170916 0.008525 0.202978 0.271690 0.594154 0.780043 \n", "75 0.217685 0.332907 0.253683 0.167637 0.712248 0.334669 0.669454 \n", "76 0.953669 0.936532 0.519399 0.407463 0.124661 0.032237 0.057315 \n", "77 0.337216 0.119393 0.140407 0.358066 0.403849 0.153271 0.030057 \n", "78 0.867706 0.960807 0.292504 0.782552 0.923039 0.448507 0.367906 \n", "79 0.464712 0.638916 0.596911 0.400870 0.389924 0.455020 0.707760 \n", "80 0.640694 0.652765 0.172012 0.238701 0.435301 0.632372 0.835614 \n", "81 0.542074 0.470207 0.361913 0.498920 0.595839 0.560050 0.184479 \n", "82 0.446899 0.956943 0.421512 0.671973 0.493486 0.706159 0.811837 \n", "83 0.046757 0.093515 0.978705 0.073193 0.087144 0.628222 0.237686 \n", "84 0.192386 0.232344 0.390192 0.828145 0.793634 0.749096 0.810883 \n", "85 0.146629 0.975754 0.197536 0.408597 0.193925 0.309173 0.331368 \n", "86 0.973764 0.768562 0.214984 0.891570 0.052226 0.568626 0.203127 \n", "87 0.935958 0.112951 0.503738 0.030938 0.020705 0.219586 0.697179 \n", "88 0.503141 0.291031 0.299887 0.088615 0.826193 0.694264 0.048398 \n", "89 0.517243 0.151222 0.625420 0.026652 0.179042 0.866507 0.305781 \n", "90 0.246551 0.410989 0.182548 0.710385 0.525971 0.187429 0.625125 \n", "91 0.281104 0.208051 0.300065 0.559628 0.080885 0.489182 0.677172 \n", "92 0.202205 0.222882 0.836638 0.188745 0.526511 0.142976 0.932710 \n", "93 0.365328 0.067016 0.260479 0.833927 0.174271 0.328066 0.120953 \n", "94 0.099917 0.972960 0.248563 0.939709 0.278545 0.874784 0.623881 \n", "95 0.384575 0.808233 0.410293 0.546478 0.363510 0.550752 0.865433 \n", "96 0.972265 0.855608 0.431820 0.887729 0.095447 0.013635 0.005369 \n", "97 0.443013 0.070544 0.189925 0.031860 0.706069 0.678759 0.608366 \n", "98 0.077568 0.949501 0.485272 0.578740 0.499380 0.327019 0.343815 \n", "99 0.155376 0.957772 0.817545 0.087401 0.692598 0.468097 0.913008 \n", "\n", " 7 8 9 10 11 12 13 \\\n", "0 0.370203 0.119913 0.797300 0.813393 0.217597 0.075991 0.641011 \n", "1 0.130738 0.202588 0.948425 0.567772 0.198878 0.924895 0.789798 \n", "2 0.961506 0.333799 0.040235 0.590649 0.948139 0.197314 0.429642 \n", "3 0.375138 0.708736 0.113676 0.043767 0.769843 0.971443 0.960800 \n", "4 0.872178 0.256827 0.723024 0.441635 0.960745 0.703610 0.900218 \n", "5 0.605702 0.257909 0.993247 0.568817 0.683365 0.086623 0.748251 \n", "6 0.903398 0.922132 0.058366 0.290822 0.726943 0.465682 0.629000 \n", "7 0.198078 0.626747 0.262134 0.955515 0.983084 0.069840 0.654970 \n", "8 0.539609 0.108131 0.339062 0.625137 0.645738 0.468916 0.060478 \n", "9 0.305085 0.816239 0.934662 0.216122 0.823190 0.611720 0.653541 \n", "10 0.724424 0.315379 0.634437 0.915385 0.469705 0.280737 0.052987 \n", "11 0.235344 0.660998 0.514938 0.973601 0.131641 0.372902 0.242042 \n", "12 0.268828 0.316619 0.269507 0.763287 0.632114 0.750555 0.299116 \n", "13 0.678261 0.631814 0.304550 0.515021 0.081605 0.293476 0.086111 \n", "14 0.336193 0.573263 0.538365 0.594855 0.433657 0.334472 0.057797 \n", "15 0.858607 0.555633 0.680493 0.233000 0.518150 0.328573 0.489802 \n", "16 0.693626 0.111514 0.001077 0.605950 0.866133 0.924439 0.016670 \n", "17 0.653020 0.573196 0.912633 0.559741 0.047761 0.270766 0.625991 \n", "18 0.709357 0.497487 0.349076 0.281547 0.989705 0.284879 0.674823 \n", "19 0.128290 0.900064 0.889617 0.928961 0.314974 0.187434 0.349362 \n", "20 0.678468 0.161162 0.781723 0.197679 0.366691 0.696398 0.595407 \n", "21 0.283467 0.664088 0.103456 0.398925 0.498581 0.673513 0.992755 \n", "22 0.379918 0.503542 0.829583 0.030764 0.795298 0.213898 0.200304 \n", "23 0.574476 0.958963 0.282599 0.119573 0.394154 0.475698 0.096617 \n", "24 0.279584 0.534938 0.640714 0.863160 0.414332 0.914883 0.905426 \n", "25 0.466549 0.681784 0.510865 0.341896 0.642011 0.194003 0.176136 \n", "26 0.213862 0.160708 0.771491 0.403530 0.728881 0.885451 0.334911 \n", "27 0.245107 0.089982 0.924144 0.352291 0.400914 0.601927 0.475980 \n", "28 0.049065 0.507503 0.091044 0.333323 0.675467 0.102059 0.041811 \n", "29 0.772687 0.540777 0.708760 0.661636 0.593298 0.212051 0.423400 \n", "30 0.588169 0.346667 0.610860 0.801080 0.952361 0.502563 0.928013 \n", "31 0.584297 0.545308 0.345272 0.135385 0.382212 0.352726 0.100584 \n", "32 0.644429 0.923094 0.077120 0.918075 0.973780 0.365385 0.428036 \n", "33 0.963246 0.027938 0.910738 0.425265 0.953610 0.737054 0.162719 \n", "34 0.572601 0.195610 0.007694 0.692215 0.054614 0.248207 0.875781 \n", "35 0.351674 0.198406 0.091559 0.261832 0.690165 0.056777 0.738249 \n", "36 0.807738 0.572842 0.879641 0.544679 0.513676 0.956565 0.397484 \n", "37 0.189690 0.019022 0.918994 0.233356 0.840770 0.820874 0.359727 \n", "38 0.783970 0.485379 0.057690 0.711698 0.512955 0.303263 0.341097 \n", "39 0.711248 0.551588 0.555332 0.389574 0.035762 0.748139 0.111814 \n", "40 0.073748 0.947695 0.054574 0.683155 0.166160 0.695241 0.642180 \n", "41 0.255090 0.607603 0.718444 0.176303 0.759999 0.065631 0.986448 \n", "42 0.928101 0.207018 0.595981 0.364307 0.820500 0.175522 0.466659 \n", "43 0.394329 0.130693 0.808118 0.036354 0.214976 0.762949 0.170085 \n", "44 0.613272 0.271541 0.996745 0.301616 0.913021 0.296811 0.139409 \n", "45 0.766565 0.121875 0.183591 0.492443 0.245181 0.695867 0.412479 \n", "46 0.304427 0.990845 0.323871 0.045816 0.280553 0.811784 0.920272 \n", "47 0.360552 0.536921 0.003268 0.418236 0.236739 0.189870 0.797396 \n", "48 0.626647 0.835509 0.579123 0.860774 0.576712 0.595198 0.686706 \n", "49 0.207030 0.422199 0.201312 0.093853 0.189420 0.747356 0.484339 \n", "50 0.486161 0.690941 0.754261 0.360024 0.133827 0.217685 0.890911 \n", "51 0.005005 0.234919 0.023112 0.644316 0.234862 0.636849 0.570068 \n", "52 0.336033 0.666465 0.203108 0.836698 0.618370 0.311864 0.658274 \n", "53 0.073767 0.381541 0.685877 0.389958 0.786228 0.037824 0.399811 \n", "54 0.687057 0.699859 0.176459 0.296652 0.573588 0.557119 0.018452 \n", "55 0.160028 0.150605 0.071756 0.055665 0.519298 0.864991 0.957702 \n", "56 0.282753 0.834884 0.122854 0.848491 0.741738 0.494087 0.306413 \n", "57 0.374379 0.785685 0.895374 0.422959 0.944429 0.817486 0.365144 \n", "58 0.127637 0.457778 0.898217 0.198500 0.101609 0.755922 0.126097 \n", "59 0.054658 0.306404 0.352801 0.207221 0.131020 0.894150 0.736893 \n", "60 0.338453 0.377245 0.089314 0.840349 0.418788 0.287238 0.356639 \n", "61 0.057624 0.617171 0.585709 0.952863 0.089109 0.396258 0.514058 \n", "62 0.691698 0.372925 0.262914 0.024516 0.122373 0.311720 0.382394 \n", "63 0.232768 0.788810 0.511310 0.295138 0.542790 0.636588 0.779574 \n", "64 0.430250 0.804930 0.326878 0.867327 0.496549 0.543669 0.930088 \n", "65 0.594426 0.162537 0.163292 0.396039 0.313997 0.151314 0.231237 \n", "66 0.161539 0.730931 0.940965 0.950832 0.538184 0.872905 0.207183 \n", "67 0.952503 0.244925 0.748086 0.975804 0.242086 0.415957 0.271573 \n", "68 0.840089 0.418843 0.050686 0.908020 0.904373 0.764753 0.996586 \n", "69 0.897609 0.404378 0.021706 0.618371 0.906555 0.406228 0.399742 \n", "70 0.227556 0.454884 0.737726 0.518611 0.341362 0.055167 0.162260 \n", "71 0.779146 0.071995 0.785226 0.712795 0.380059 0.100539 0.806584 \n", "72 0.041724 0.165307 0.691348 0.316237 0.799991 0.955482 0.325381 \n", "73 0.287510 0.552654 0.702003 0.538719 0.964124 0.193855 0.286752 \n", "74 0.810323 0.807003 0.638173 0.946288 0.330072 0.687379 0.245010 \n", "75 0.566433 0.551753 0.949788 0.199111 0.186971 0.925138 0.429849 \n", "76 0.324400 0.918338 0.078754 0.870815 0.038274 0.458141 0.490392 \n", "77 0.693285 0.950651 0.297738 0.459632 0.627602 0.563293 0.052328 \n", "78 0.668406 0.213995 0.596635 0.711361 0.473227 0.624156 0.164661 \n", "79 0.285201 0.285224 0.786104 0.561744 0.714790 0.159662 0.783853 \n", "80 0.340019 0.624258 0.596465 0.618562 0.715032 0.009530 0.329951 \n", "81 0.104579 0.068542 0.012931 0.875295 0.687544 0.616432 0.750181 \n", "82 0.988642 0.653512 0.658120 0.012855 0.744878 0.350415 0.984497 \n", "83 0.202346 0.455385 0.453386 0.558833 0.899820 0.129453 0.230235 \n", "84 0.700307 0.307748 0.483095 0.057844 0.016603 0.318474 0.959070 \n", "85 0.296980 0.382561 0.957489 0.254395 0.250440 0.426225 0.106639 \n", "86 0.906710 0.827621 0.994204 0.969008 0.418948 0.342615 0.251654 \n", "87 0.523962 0.738986 0.306575 0.208350 0.518736 0.252732 0.317812 \n", "88 0.205266 0.579757 0.298720 0.176049 0.370353 0.885604 0.455893 \n", "89 0.379515 0.752613 0.880888 0.728655 0.198675 0.563817 0.331599 \n", "90 0.573944 0.898057 0.295871 0.455465 0.799077 0.824962 0.309985 \n", "91 0.078778 0.074930 0.610005 0.136230 0.293313 0.748696 0.483137 \n", "92 0.477066 0.559919 0.061231 0.276869 0.089255 0.749884 0.223453 \n", "93 0.986426 0.373958 0.954289 0.684058 0.496419 0.849028 0.033297 \n", "94 0.254895 0.699770 0.280449 0.799373 0.376013 0.668393 0.447490 \n", "95 0.263930 0.089405 0.020224 0.448728 0.379692 0.123062 0.843833 \n", "96 0.053794 0.947760 0.156041 0.533009 0.126280 0.846932 0.698638 \n", "97 0.090716 0.644679 0.498870 0.768818 0.385197 0.477038 0.331151 \n", "98 0.874237 0.294809 0.293207 0.972275 0.666216 0.361570 0.410536 \n", "99 0.567578 0.247393 0.620830 0.199235 0.989452 0.160533 0.269349 \n", "\n", " 14 15 16 17 18 19 20 \\\n", "0 0.152553 0.398929 0.412747 0.495972 0.426923 0.057331 0.907335 \n", "1 0.067976 0.226943 0.250648 0.110083 0.086327 0.985833 0.469663 \n", "2 0.052509 0.685962 0.018500 0.424301 0.038459 0.436108 0.597363 \n", "3 0.183116 0.550305 0.300616 0.936178 0.384496 0.670216 0.916064 \n", "4 0.129143 0.691840 0.529385 0.225385 0.314935 0.663522 0.416517 \n", "5 0.145187 0.956925 0.709713 0.978972 0.391186 0.778853 0.644358 \n", "6 0.333665 0.270113 0.515332 0.977382 0.611564 0.913686 0.296590 \n", "7 0.257981 0.936330 0.294464 0.037339 0.527534 0.702398 0.119693 \n", "8 0.562937 0.133318 0.167932 0.508497 0.180976 0.754520 0.761375 \n", "9 0.423822 0.887000 0.039315 0.677546 0.431833 0.409528 0.884798 \n", "10 0.457430 0.169607 0.321497 0.652358 0.300634 0.903797 0.515073 \n", "11 0.620540 0.347847 0.079931 0.212704 0.538853 0.432121 0.069997 \n", "12 0.748178 0.319981 0.581872 0.239044 0.094453 0.584066 0.210230 \n", "13 0.211582 0.804969 0.404649 0.643264 0.916444 0.228347 0.446108 \n", "14 0.948607 0.967295 0.151642 0.350897 0.951102 0.960497 0.080081 \n", "15 0.726806 0.005590 0.737815 0.591044 0.276552 0.876043 0.899343 \n", "16 0.038890 0.330194 0.905049 0.053323 0.379276 0.477070 0.885285 \n", "17 0.764665 0.988811 0.870873 0.817841 0.266430 0.901922 0.272297 \n", "18 0.661377 0.626745 0.342837 0.174544 0.699321 0.737172 0.531518 \n", "19 0.625388 0.224359 0.828881 0.365829 0.371148 0.535126 0.696872 \n", "20 0.228014 0.659368 0.070010 0.199005 0.495725 0.475817 0.752258 \n", "21 0.897678 0.076425 0.277140 0.804702 0.623825 0.325423 0.003088 \n", "22 0.351145 0.900516 0.189523 0.664209 0.129083 0.935204 0.947282 \n", "23 0.750427 0.314251 0.918600 0.244872 0.887766 0.844412 0.496408 \n", "24 0.669827 0.740110 0.046268 0.257567 0.412065 0.971992 0.059296 \n", "25 0.678555 0.895494 0.693578 0.269054 0.002012 0.768728 0.678023 \n", "26 0.957275 0.406542 0.104049 0.846459 0.121404 0.678292 0.253461 \n", "27 0.583649 0.538165 0.693437 0.562741 0.957271 0.017563 0.509851 \n", "28 0.391393 0.194722 0.513964 0.454184 0.607115 0.154261 0.421348 \n", "29 0.836189 0.208818 0.123221 0.589420 0.740686 0.388635 0.771973 \n", "30 0.235149 0.909307 0.110822 0.191069 0.648090 0.193660 0.614083 \n", "31 0.411745 0.321778 0.841084 0.177530 0.566323 0.690729 0.690565 \n", "32 0.876110 0.446492 0.452866 0.604891 0.379622 0.881405 0.106689 \n", "33 0.109166 0.203975 0.491198 0.494556 0.294155 0.093356 0.886009 \n", "34 0.662057 0.570455 0.914122 0.748697 0.371530 0.799924 0.136684 \n", "35 0.860423 0.637600 0.814031 0.377364 0.090392 0.924764 0.255793 \n", "36 0.592211 0.570091 0.420031 0.044040 0.511031 0.357037 0.251677 \n", "37 0.204347 0.354155 0.910890 0.107344 0.078744 0.390031 0.862202 \n", "38 0.651795 0.079569 0.529197 0.683429 0.826175 0.238200 0.808394 \n", "39 0.286402 0.282645 0.042980 0.109347 0.863596 0.746091 0.205647 \n", "40 0.618130 0.306592 0.098641 0.648512 0.418518 0.220290 0.464926 \n", "41 0.928723 0.325276 0.039831 0.452483 0.270144 0.142076 0.691465 \n", "42 0.137356 0.853624 0.075736 0.647529 0.223741 0.683086 0.627155 \n", "43 0.017075 0.859210 0.130977 0.701242 0.586054 0.946480 0.734424 \n", "44 0.593337 0.284343 0.488794 0.453034 0.561590 0.488589 0.526806 \n", "45 0.763473 0.364036 0.933494 0.988541 0.852133 0.781288 0.072685 \n", "46 0.261799 0.676882 0.180754 0.940633 0.436200 0.389245 0.484100 \n", "47 0.830240 0.768234 0.333011 0.708766 0.305381 0.089423 0.308147 \n", "48 0.766777 0.677700 0.602408 0.539586 0.371917 0.107216 0.483100 \n", "49 0.086878 0.207687 0.752801 0.360902 0.983270 0.095683 0.214867 \n", "50 0.805264 0.761686 0.482925 0.873497 0.790204 0.691919 0.113317 \n", "51 0.533310 0.638862 0.982652 0.370607 0.904483 0.732998 0.423471 \n", "52 0.270383 0.227260 0.739582 0.009175 0.285989 0.521315 0.759934 \n", "53 0.662579 0.424186 0.303661 0.254112 0.583194 0.846797 0.531135 \n", "54 0.185157 0.349415 0.163049 0.317488 0.366420 0.560923 0.721519 \n", "55 0.382958 0.599153 0.451381 0.784357 0.623244 0.135769 0.289674 \n", "56 0.894412 0.190550 0.910316 0.311451 0.824721 0.504628 0.369316 \n", "57 0.712443 0.580169 0.582657 0.023031 0.974471 0.886274 0.896820 \n", "58 0.594624 0.449357 0.652551 0.487731 0.739320 0.751277 0.668256 \n", "59 0.036322 0.829056 0.001874 0.766904 0.107745 0.181201 0.209287 \n", "60 0.732129 0.021448 0.574784 0.121079 0.446276 0.849435 0.041734 \n", "61 0.024191 0.328654 0.717438 0.022365 0.142573 0.205886 0.647488 \n", "62 0.409725 0.729299 0.268347 0.229804 0.150551 0.426595 0.240304 \n", "63 0.959593 0.778705 0.365191 0.398598 0.250133 0.669720 0.068832 \n", "64 0.194347 0.209162 0.603991 0.073787 0.435740 0.968915 0.047523 \n", "65 0.834722 0.939717 0.469184 0.578252 0.123564 0.656203 0.212590 \n", "66 0.586554 0.185640 0.461027 0.602014 0.724557 0.886336 0.099279 \n", "67 0.316028 0.614613 0.303237 0.163130 0.196834 0.906492 0.262982 \n", "68 0.182455 0.033250 0.859588 0.085220 0.675355 0.925079 0.549517 \n", "69 0.042835 0.912831 0.395944 0.271927 0.628504 0.174363 0.798152 \n", "70 0.971913 0.742634 0.569280 0.963495 0.526262 0.463755 0.176424 \n", "71 0.856195 0.190467 0.524509 0.923388 0.885587 0.142400 0.068274 \n", "72 0.224191 0.224140 0.039197 0.796239 0.691752 0.270912 0.223103 \n", "73 0.956875 0.172407 0.469483 0.587602 0.216050 0.197944 0.753592 \n", "74 0.652627 0.583266 0.926175 0.699227 0.390555 0.707715 0.197371 \n", "75 0.100118 0.245210 0.005838 0.328856 0.472778 0.702947 0.784864 \n", "76 0.061840 0.601993 0.581063 0.678933 0.394721 0.203167 0.703948 \n", "77 0.717753 0.526154 0.658606 0.066890 0.042696 0.201334 0.641133 \n", "78 0.355097 0.635242 0.469168 0.312519 0.792453 0.711826 0.825279 \n", "79 0.728461 0.403996 0.030646 0.388762 0.716370 0.089414 0.191447 \n", "80 0.113655 0.253422 0.819658 0.760127 0.049612 0.748235 0.276491 \n", "81 0.841943 0.982929 0.770140 0.048483 0.005412 0.017292 0.391493 \n", "82 0.553889 0.072274 0.230562 0.985526 0.341784 0.341256 0.926718 \n", "83 0.912613 0.725789 0.191705 0.521836 0.169267 0.234400 0.697058 \n", "84 0.769295 0.794240 0.365978 0.875939 0.688364 0.340601 0.749707 \n", "85 0.094297 0.579362 0.300533 0.416860 0.526611 0.493474 0.446917 \n", "86 0.266212 0.682123 0.546489 0.005642 0.380782 0.024447 0.710405 \n", "87 0.372713 0.995537 0.917949 0.928822 0.622103 0.868068 0.078160 \n", "88 0.692277 0.977451 0.977567 0.323352 0.270029 0.999281 0.202091 \n", "89 0.793669 0.274265 0.664210 0.418347 0.784137 0.472254 0.837649 \n", "90 0.284436 0.679448 0.677339 0.031058 0.342612 0.712220 0.800766 \n", "91 0.161082 0.733307 0.835505 0.110934 0.448179 0.367703 0.844146 \n", "92 0.330966 0.752482 0.111778 0.233322 0.225039 0.814970 0.669704 \n", "93 0.051117 0.394829 0.084870 0.705926 0.105378 0.424805 0.736945 \n", "94 0.209683 0.979850 0.571784 0.225737 0.029467 0.791515 0.952270 \n", "95 0.535687 0.553492 0.743439 0.897055 0.903819 0.460931 0.634256 \n", "96 0.208158 0.502204 0.804167 0.663162 0.272953 0.839197 0.914726 \n", "97 0.850054 0.689241 0.025337 0.080979 0.775769 0.041505 0.685892 \n", "98 0.710539 0.504775 0.434745 0.502746 0.228916 0.516033 0.765215 \n", "99 0.634714 0.709957 0.637265 0.871948 0.866360 0.175904 0.392456 \n", "\n", " 21 22 23 24 25 26 27 \\\n", "0 0.242210 0.860111 0.764627 0.243772 0.744785 0.944923 0.991802 \n", "1 0.990004 0.864332 0.768623 0.451735 0.677281 0.016003 0.733019 \n", "2 0.163290 0.551183 0.110727 0.180119 0.188264 0.309836 0.129119 \n", "3 0.663030 0.230242 0.624192 0.407815 0.740665 0.504651 0.021896 \n", "4 0.845554 0.001661 0.000941 0.205084 0.327311 0.065750 0.462068 \n", "5 0.615774 0.038427 0.241094 0.911206 0.918750 0.052265 0.402419 \n", "6 0.209712 0.834807 0.673749 0.387952 0.185758 0.149772 0.865447 \n", "7 0.466901 0.070817 0.526581 0.108649 0.444628 0.918643 0.218161 \n", "8 0.060383 0.781094 0.384702 0.367787 0.543003 0.618757 0.459120 \n", "9 0.728613 0.370678 0.977302 0.581606 0.125268 0.196706 0.388035 \n", "10 0.028171 0.425426 0.603490 0.716513 0.123498 0.222629 0.910237 \n", "11 0.866002 0.541957 0.327762 0.050988 0.585496 0.310973 0.004999 \n", "12 0.043657 0.724076 0.428575 0.180019 0.877576 0.083257 0.458346 \n", "13 0.381073 0.761629 0.722589 0.741040 0.835229 0.258541 0.287785 \n", "14 0.098757 0.185077 0.511918 0.237707 0.142528 0.891438 0.806999 \n", "15 0.489191 0.008964 0.488479 0.807909 0.878133 0.257454 0.574865 \n", "16 0.294306 0.728870 0.036288 0.117258 0.162836 0.096697 0.697209 \n", "17 0.342966 0.630057 0.116416 0.927370 0.891600 0.123707 0.087093 \n", "18 0.309345 0.382286 0.259682 0.162219 0.137275 0.122808 0.194412 \n", "19 0.307474 0.360111 0.777404 0.527858 0.658311 0.874442 0.317369 \n", "20 0.113858 0.779835 0.790192 0.248075 0.967884 0.393130 0.473883 \n", "21 0.473770 0.380403 0.539762 0.264476 0.650952 0.718906 0.097410 \n", "22 0.891038 0.770340 0.179773 0.104121 0.741933 0.025690 0.477218 \n", "23 0.576494 0.445171 0.758714 0.944654 0.532030 0.137241 0.087748 \n", "24 0.474689 0.667531 0.616685 0.424421 0.184510 0.404427 0.126029 \n", "25 0.463972 0.534715 0.720319 0.918027 0.405074 0.052709 0.751659 \n", "26 0.751406 0.164445 0.470135 0.754815 0.811779 0.244966 0.035292 \n", "27 0.971199 0.313072 0.870392 0.409245 0.166389 0.470059 0.333368 \n", "28 0.916496 0.613131 0.600833 0.029396 0.149743 0.751259 0.351360 \n", "29 0.001448 0.759421 0.889395 0.714099 0.609490 0.195200 0.239485 \n", "30 0.692971 0.239337 0.502809 0.906174 0.844201 0.501841 0.109495 \n", "31 0.988513 0.948981 0.681599 0.664379 0.409103 0.494528 0.319356 \n", "32 0.897957 0.335940 0.456464 0.773685 0.863320 0.278794 0.621384 \n", "33 0.613690 0.382977 0.804052 0.913710 0.316802 0.817641 0.047581 \n", "34 0.384212 0.987660 0.260141 0.253554 0.134256 0.403624 0.772729 \n", "35 0.789511 0.296198 0.330190 0.921916 0.137425 0.097964 0.976958 \n", "36 0.566612 0.226526 0.658419 0.423045 0.871050 0.094107 0.101532 \n", "37 0.934260 0.686790 0.557980 0.427497 0.015030 0.389670 0.807917 \n", "38 0.530980 0.513132 0.337517 0.510115 0.309539 0.031413 0.248283 \n", "39 0.365282 0.082429 0.274524 0.661511 0.193382 0.771945 0.005463 \n", "40 0.048291 0.408438 0.145209 0.583449 0.916306 0.906106 0.275851 \n", "41 0.900770 0.312392 0.866208 0.485988 0.957880 0.074566 0.535153 \n", "42 0.920480 0.390963 0.918174 0.957856 0.957133 0.549880 0.165199 \n", "43 0.087070 0.916793 0.603983 0.806833 0.866316 0.550282 0.791297 \n", "44 0.356344 0.633075 0.376531 0.104057 0.547391 0.681421 0.600035 \n", "45 0.356654 0.571731 0.685233 0.282982 0.520551 0.612957 0.234516 \n", "46 0.373068 0.034519 0.635554 0.222746 0.628988 0.065618 0.833896 \n", "47 0.862552 0.735222 0.931428 0.622175 0.100053 0.604539 0.780060 \n", "48 0.851476 0.651523 0.602201 0.590090 0.421486 0.304977 0.977240 \n", "49 0.171013 0.144147 0.711307 0.664805 0.823824 0.535989 0.187624 \n", "50 0.901630 0.205642 0.347238 0.850324 0.432353 0.222060 0.298383 \n", "51 0.900475 0.003570 0.246337 0.819377 0.401650 0.115449 0.308261 \n", "52 0.801289 0.650290 0.824796 0.504638 0.304650 0.925207 0.393955 \n", "53 0.838616 0.170024 0.300355 0.381237 0.997520 0.247993 0.954518 \n", "54 0.520232 0.380921 0.106550 0.952323 0.101439 0.329474 0.361227 \n", "55 0.074639 0.548266 0.208628 0.476588 0.636338 0.104437 0.422542 \n", "56 0.730550 0.242383 0.692589 0.589590 0.383386 0.480540 0.741165 \n", "57 0.829163 0.417331 0.881706 0.582530 0.218453 0.787999 0.522737 \n", "58 0.069956 0.298945 0.557159 0.755293 0.152569 0.764885 0.146185 \n", "59 0.704393 0.466890 0.771573 0.657276 0.762535 0.415738 0.802490 \n", "60 0.880450 0.683843 0.723314 0.665375 0.994892 0.808250 0.591550 \n", "61 0.524721 0.193966 0.623070 0.079615 0.835274 0.758916 0.644262 \n", "62 0.911477 0.609629 0.114163 0.633115 0.941467 0.556431 0.597430 \n", "63 0.150054 0.699938 0.367287 0.580641 0.191205 0.107215 0.032595 \n", "64 0.044949 0.055982 0.464782 0.185307 0.689003 0.236008 0.771977 \n", "65 0.820115 0.052182 0.267062 0.124191 0.430600 0.446272 0.779073 \n", "66 0.952010 0.361844 0.746798 0.248278 0.097081 0.499007 0.015886 \n", "67 0.386960 0.382168 0.086392 0.141270 0.282643 0.396020 0.178328 \n", "68 0.117069 0.183175 0.530703 0.509579 0.672034 0.319676 0.782981 \n", "69 0.944091 0.485462 0.305534 0.195840 0.373059 0.815720 0.145745 \n", "70 0.281526 0.021693 0.213761 0.219988 0.435527 0.449357 0.759042 \n", "71 0.551541 0.324617 0.048629 0.105459 0.427634 0.178608 0.079104 \n", "72 0.428264 0.739740 0.750224 0.090991 0.510390 0.078146 0.073564 \n", "73 0.442888 0.699712 0.656769 0.882594 0.381329 0.846669 0.301897 \n", "74 0.183450 0.728087 0.412985 0.012570 0.935167 0.037356 0.693228 \n", "75 0.907587 0.498185 0.672659 0.678085 0.240770 0.309763 0.555630 \n", "76 0.884715 0.743305 0.092940 0.462505 0.221352 0.237253 0.876668 \n", "77 0.300364 0.835279 0.337558 0.372496 0.087397 0.926316 0.437987 \n", "78 0.790778 0.262842 0.774944 0.323007 0.590386 0.458286 0.118084 \n", "79 0.419190 0.367281 0.378881 0.462889 0.850073 0.114963 0.423717 \n", "80 0.079133 0.597637 0.976567 0.862701 0.753617 0.715103 0.418215 \n", "81 0.420823 0.891302 0.597312 0.489133 0.672835 0.979283 0.423083 \n", "82 0.374552 0.815879 0.087653 0.062792 0.441571 0.381581 0.653622 \n", "83 0.400330 0.517042 0.010785 0.180624 0.371430 0.392193 0.581574 \n", "84 0.855207 0.437958 0.202583 0.586047 0.223368 0.178667 0.094266 \n", "85 0.702993 0.202714 0.800684 0.581990 0.832557 0.681088 0.529595 \n", "86 0.963374 0.002851 0.278126 0.303319 0.382781 0.228294 0.117718 \n", "87 0.428651 0.148882 0.194853 0.329601 0.455193 0.134463 0.739601 \n", "88 0.066818 0.137034 0.248964 0.490571 0.553426 0.839173 0.139945 \n", "89 0.714594 0.127457 0.151064 0.844610 0.281106 0.308681 0.831363 \n", "90 0.775104 0.766749 0.391896 0.954093 0.741952 0.735355 0.970587 \n", "91 0.490336 0.689666 0.900623 0.278627 0.491377 0.713210 0.246250 \n", "92 0.784607 0.980003 0.074185 0.503369 0.614454 0.129876 0.074444 \n", "93 0.384884 0.627406 0.101251 0.897678 0.566562 0.951890 0.490194 \n", "94 0.556615 0.639764 0.161342 0.669579 0.122120 0.385166 0.969815 \n", "95 0.488520 0.682969 0.964561 0.899604 0.378423 0.644292 0.677258 \n", "96 0.640468 0.527957 0.277913 0.429337 0.589427 0.609376 0.701999 \n", "97 0.890387 0.888898 0.443587 0.018628 0.549022 0.642324 0.479254 \n", "98 0.099779 0.944932 0.646978 0.565845 0.961522 0.042999 0.745851 \n", "99 0.260810 0.912724 0.179538 0.363543 0.810410 0.292306 0.195655 \n", "\n", " 28 29 \n", "0 0.775039 0.412386 \n", "1 0.439045 0.404881 \n", "2 0.233958 0.301704 \n", "3 0.235594 0.978403 \n", "4 0.800227 0.652551 \n", "5 0.607283 0.789062 \n", "6 0.864838 0.734848 \n", "7 0.628602 0.562219 \n", "8 0.752381 0.280349 \n", "9 0.942682 0.059056 \n", "10 0.086722 0.716075 \n", "11 0.820443 0.345355 \n", "12 0.053451 0.315931 \n", "13 0.146448 0.003330 \n", "14 0.323360 0.913913 \n", "15 0.336875 0.647768 \n", "16 0.354697 0.083038 \n", "17 0.574580 0.721992 \n", "18 0.087458 0.385799 \n", "19 0.936701 0.993278 \n", "20 0.672919 0.256158 \n", "21 0.047993 0.879046 \n", "22 0.080934 0.912208 \n", "23 0.372629 0.617857 \n", "24 0.981709 0.962642 \n", "25 0.790349 0.240731 \n", "26 0.059534 0.939546 \n", "27 0.827256 0.856752 \n", "28 0.417076 0.902869 \n", "29 0.604957 0.709172 \n", "30 0.861290 0.055246 \n", "31 0.328964 0.072510 \n", "32 0.132359 0.765531 \n", "33 0.132360 0.941529 \n", "34 0.751016 0.953293 \n", "35 0.140189 0.181310 \n", "36 0.567580 0.283756 \n", "37 0.634687 0.631037 \n", "38 0.142824 0.487245 \n", "39 0.984529 0.976142 \n", "40 0.002957 0.525038 \n", "41 0.421275 0.273299 \n", "42 0.593712 0.517212 \n", "43 0.272787 0.461349 \n", "44 0.244555 0.876272 \n", "45 0.860184 0.896478 \n", "46 0.662683 0.816639 \n", "47 0.962411 0.588523 \n", "48 0.514393 0.048044 \n", "49 0.217189 0.570282 \n", "50 0.664775 0.958049 \n", "51 0.612941 0.870673 \n", "52 0.199614 0.361320 \n", "53 0.220393 0.734893 \n", "54 0.659153 0.464153 \n", "55 0.098107 0.554296 \n", "56 0.831809 0.777391 \n", "57 0.469207 0.630730 \n", "58 0.886109 0.499044 \n", "59 0.518260 0.679503 \n", "60 0.027459 0.750605 \n", "61 0.800594 0.906065 \n", "62 0.269005 0.758348 \n", "63 0.379773 0.619523 \n", "64 0.751289 0.392166 \n", "65 0.790516 0.533594 \n", "66 0.489082 0.985338 \n", "67 0.856421 0.458342 \n", "68 0.014328 0.609038 \n", "69 0.860231 0.946066 \n", "70 0.059454 0.882776 \n", "71 0.338519 0.832808 \n", "72 0.568727 0.106031 \n", "73 0.016270 0.811660 \n", "74 0.191860 0.630727 \n", "75 0.948622 0.561589 \n", "76 0.164604 0.362618 \n", "77 0.844932 0.575924 \n", "78 0.823297 0.871790 \n", "79 0.210187 0.802821 \n", "80 0.168063 0.244866 \n", "81 0.450852 0.491330 \n", "82 0.638020 0.639932 \n", "83 0.664830 0.846698 \n", "84 0.676757 0.813497 \n", "85 0.711596 0.172003 \n", "86 0.958912 0.984522 \n", "87 0.143992 0.522306 \n", "88 0.849452 0.852110 \n", "89 0.940927 0.396301 \n", "90 0.673959 0.839634 \n", "91 0.472259 0.313519 \n", "92 0.035547 0.263580 \n", "93 0.781995 0.407303 \n", "94 0.061409 0.089618 \n", "95 0.353208 0.098977 \n", "96 0.274253 0.105528 \n", "97 0.050797 0.228636 \n", "98 0.070118 0.014579 \n", "99 0.623025 0.853659 " ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.set_option('display.max_columns', None)\n", "pd.set_option('display.max_rows', None)\n", "df" ] }, { "cell_type": "code", "execution_count": 24, "id": "6faedb40-6622-4a88-aeac-b6535d29cca6", "metadata": {}, "outputs": [], "source": [ "pd.set_option('display.max_columns', 10)\n", "pd.set_option('display.max_rows', 10)" ] }, { "cell_type": "code", "execution_count": 25, "id": "d03f5e44-3994-44c8-8393-40297f8289b4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
GOOGAAPLAMZNFBNFLXMSFT
count105.000000105.000000105.000000105.000000105.000000105.000000
mean1.0462061.1385361.3938220.9451211.5405591.318059
std0.0777760.1821090.1407960.1033500.2005080.220662
min0.8886890.8472001.0000000.6687181.0000000.988547
25%0.9929241.0004001.3040910.8795291.3988761.142873
50%1.0363721.0954291.4202780.9599681.5608841.242431
75%1.0951891.2360001.4917021.0168581.7016051.543599
max1.2265041.6780001.6374941.1235751.9576651.802472
\n", "
" ], "text/plain": [ " GOOG AAPL AMZN FB NFLX MSFT\n", "count 105.000000 105.000000 105.000000 105.000000 105.000000 105.000000\n", "mean 1.046206 1.138536 1.393822 0.945121 1.540559 1.318059\n", "std 0.077776 0.182109 0.140796 0.103350 0.200508 0.220662\n", "min 0.888689 0.847200 1.000000 0.668718 1.000000 0.988547\n", "25% 0.992924 1.000400 1.304091 0.879529 1.398876 1.142873\n", "50% 1.036372 1.095429 1.420278 0.959968 1.560884 1.242431\n", "75% 1.095189 1.236000 1.491702 1.016858 1.701605 1.543599\n", "max 1.226504 1.678000 1.637494 1.123575 1.957665 1.802472" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(os.path.join('files','stocks.csv'))\n", "df.describe()" ] }, { "cell_type": "code", "execution_count": 26, "id": "602715a0-e57d-4dc0-b1a2-733f9b90c3ae", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 Canada\n", "1 Germany\n", "2 France\n", "3 Germany\n", "4 Mexico\n", " ... \n", "695 France\n", "696 Mexico\n", "697 Mexico\n", "698 Canada\n", "699 United States of America\n", "Name: Country, Length: 700, dtype: object" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_excel(os.path.join('files','Sample.xlsx'))\n", "df.Country" ] }, { "cell_type": "code", "execution_count": 27, "id": "821f2a23-63ef-491e-a16a-8c4d7aa1cbbc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 1618.5\n", "1 1321.0\n", "2 2178.0\n", "3 888.0\n", "4 2470.0\n", " ... \n", "695 2475.0\n", "696 546.0\n", "697 1368.0\n", "698 723.0\n", "699 1806.0\n", "Name: Units Sold, Length: 700, dtype: float64" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['Units Sold']" ] }, { "cell_type": "code", "execution_count": 28, "id": "1608f861-912a-4d4a-8c02-e89df2769454", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SegmentCountryProductDiscount BandUnits Sold...ProfitDateMonth NumberMonth NameYear
0GovernmentCanadaCarreteraNone1618.5...16185.02014-01-011January2014
1GovernmentGermanyCarreteraNone1321.0...13210.02014-01-011January2014
2MidmarketFranceCarreteraNone2178.0...10890.02014-06-016June2014
3MidmarketGermanyCarreteraNone888.0...4440.02014-06-016June2014
4MidmarketMexicoCarreteraNone2470.0...12350.02014-06-016June2014
\n", "

5 rows × 16 columns

\n", "
" ], "text/plain": [ " Segment Country Product Discount Band Units Sold ... Profit \\\n", "0 Government Canada Carretera None 1618.5 ... 16185.0 \n", "1 Government Germany Carretera None 1321.0 ... 13210.0 \n", "2 Midmarket France Carretera None 2178.0 ... 10890.0 \n", "3 Midmarket Germany Carretera None 888.0 ... 4440.0 \n", "4 Midmarket Mexico Carretera None 2470.0 ... 12350.0 \n", "\n", " Date Month Number Month Name Year \n", "0 2014-01-01 1 January 2014 \n", "1 2014-01-01 1 January 2014 \n", "2 2014-06-01 6 June 2014 \n", "3 2014-06-01 6 June 2014 \n", "4 2014-06-01 6 June 2014 \n", "\n", "[5 rows x 16 columns]" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[0:5]" ] }, { "cell_type": "code", "execution_count": 29, "id": "362b0c27-e71d-4eaf-8a68-662bcae44e71", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SegmentCountryProductDiscount BandUnits Sold...ProfitDateMonth NumberMonth NameYear
0GovernmentCanadaCarreteraNone1618.5...16185.0002014-01-011January2014
5GovernmentGermanyCarreteraNone1513.0...136170.0002014-12-0112December2014
10MidmarketMexicoMontanaNone2470.0...12350.0002014-06-016June2014
15MidmarketUnited States of AmericaMontanaNone615.0...3075.0002014-12-0112December2014
20Channel PartnersGermanyPaseoNone367.0...3303.0002014-07-017July2014
....................................
75GovernmentUnited States of AmericaPaseoLow4492.5...8670.5252014-04-014April2014
80Channel PartnersGermanyPaseoLow766.0...6802.0802013-10-0110October2013
85EnterpriseCanadaVeloLow923.0...3461.2502014-08-018August2014
90EnterpriseUnited States of AmericaVTTLow727.0...2726.2502014-06-016June2014
95EnterpriseFranceVTTLow1744.0...6540.0002014-11-0111November2014
\n", "

20 rows × 16 columns

\n", "
" ], "text/plain": [ " Segment Country Product Discount Band \\\n", "0 Government Canada Carretera None \n", "5 Government Germany Carretera None \n", "10 Midmarket Mexico Montana None \n", "15 Midmarket United States of America Montana None \n", "20 Channel Partners Germany Paseo None \n", ".. ... ... ... ... \n", "75 Government United States of America Paseo Low \n", "80 Channel Partners Germany Paseo Low \n", "85 Enterprise Canada Velo Low \n", "90 Enterprise United States of America VTT Low \n", "95 Enterprise France VTT Low \n", "\n", " Units Sold ... Profit Date Month Number Month Name Year \n", "0 1618.5 ... 16185.000 2014-01-01 1 January 2014 \n", "5 1513.0 ... 136170.000 2014-12-01 12 December 2014 \n", "10 2470.0 ... 12350.000 2014-06-01 6 June 2014 \n", "15 615.0 ... 3075.000 2014-12-01 12 December 2014 \n", "20 367.0 ... 3303.000 2014-07-01 7 July 2014 \n", ".. ... ... ... ... ... ... ... \n", "75 4492.5 ... 8670.525 2014-04-01 4 April 2014 \n", "80 766.0 ... 6802.080 2013-10-01 10 October 2013 \n", "85 923.0 ... 3461.250 2014-08-01 8 August 2014 \n", "90 727.0 ... 2726.250 2014-06-01 6 June 2014 \n", "95 1744.0 ... 6540.000 2014-11-01 11 November 2014 \n", "\n", "[20 rows x 16 columns]" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[0:100:5]" ] }, { "cell_type": "code", "execution_count": 30, "id": "749023b7-2341-4d12-982b-525d1b180366", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SegmentCountryProduct
5GovernmentGermanyCarretera
6MidmarketGermanyMontana
7Channel PartnersCanadaMontana
8GovernmentFranceMontana
9Channel PartnersGermanyMontana
10MidmarketMexicoMontana
\n", "
" ], "text/plain": [ " Segment Country Product\n", "5 Government Germany Carretera\n", "6 Midmarket Germany Montana\n", "7 Channel Partners Canada Montana\n", "8 Government France Montana\n", "9 Channel Partners Germany Montana\n", "10 Midmarket Mexico Montana" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[5:10,'Segment':'Product']" ] }, { "cell_type": "code", "execution_count": 31, "id": "4e9d0dec-f811-4c64-8337-71396fb04fa1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ProductDiscount BandUnits Sold
5CarreteraNone1513.0
6MontanaNone921.0
7MontanaNone2518.0
8MontanaNone1899.0
9MontanaNone1545.0
\n", "
" ], "text/plain": [ " Product Discount Band Units Sold\n", "5 Carretera None 1513.0\n", "6 Montana None 921.0\n", "7 Montana None 2518.0\n", "8 Montana None 1899.0\n", "9 Montana None 1545.0" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[5:10,2:5]" ] }, { "cell_type": "code", "execution_count": 32, "id": "d4247f61-14b9-439c-a9ac-15cc643fbbb7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 False\n", "1 False\n", "2 False\n", "3 True\n", "4 False\n", " ... \n", "695 False\n", "696 True\n", "697 False\n", "698 True\n", "699 False\n", "Name: Units Sold, Length: 700, dtype: bool" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s = df['Units Sold'] < 1000\n", "s" ] }, { "cell_type": "code", "execution_count": 33, "id": "927679cf-8966-41d6-9e18-6afe2a852b1b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SegmentCountryProductDiscount BandUnits Sold...ProfitDateMonth NumberMonth NameYear
3MidmarketGermanyCarreteraNone888.0...4440.002014-06-016June2014
6MidmarketGermanyMontanaNone921.0...4605.002014-03-013March2014
12Small BusinessMexicoMontanaNone958.0...47900.002014-08-018August2014
14EnterpriseCanadaMontanaNone345.0...1725.002013-10-0110October2013
15MidmarketUnited States of AmericaMontanaNone615.0...3075.002014-12-0112December2014
....................................
690GovernmentUnited States of AmericaVTTHigh267.0...1869.002013-10-0110October2013
693EnterpriseGermanyVTTHigh552.0...-7590.002014-11-0111November2014
694GovernmentFranceVTTHigh293.0...2051.002014-12-0112December2014
696Small BusinessMexicoAmarillaHigh546.0...2730.002014-10-0110October2014
698GovernmentCanadaPaseoHigh723.0...686.852014-04-014April2014
\n", "

201 rows × 16 columns

\n", "
" ], "text/plain": [ " Segment Country Product Discount Band \\\n", "3 Midmarket Germany Carretera None \n", "6 Midmarket Germany Montana None \n", "12 Small Business Mexico Montana None \n", "14 Enterprise Canada Montana None \n", "15 Midmarket United States of America Montana None \n", ".. ... ... ... ... \n", "690 Government United States of America VTT High \n", "693 Enterprise Germany VTT High \n", "694 Government France VTT High \n", "696 Small Business Mexico Amarilla High \n", "698 Government Canada Paseo High \n", "\n", " Units Sold ... Profit Date Month Number Month Name Year \n", "3 888.0 ... 4440.00 2014-06-01 6 June 2014 \n", "6 921.0 ... 4605.00 2014-03-01 3 March 2014 \n", "12 958.0 ... 47900.00 2014-08-01 8 August 2014 \n", "14 345.0 ... 1725.00 2013-10-01 10 October 2013 \n", "15 615.0 ... 3075.00 2014-12-01 12 December 2014 \n", ".. ... ... ... ... ... ... ... \n", "690 267.0 ... 1869.00 2013-10-01 10 October 2013 \n", "693 552.0 ... -7590.00 2014-11-01 11 November 2014 \n", "694 293.0 ... 2051.00 2014-12-01 12 December 2014 \n", "696 546.0 ... 2730.00 2014-10-01 10 October 2014 \n", "698 723.0 ... 686.85 2014-04-01 4 April 2014 \n", "\n", "[201 rows x 16 columns]" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df['Units Sold'] < 1000]" ] }, { "cell_type": "code", "execution_count": 34, "id": "5a16aad0-9c4e-47ce-871f-ed257aceb68a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SegmentCountryProductDiscount BandUnits Sold...ProfitDateMonth NumberMonth NameYear
12Small BusinessMexicoMontanaNone958.0...47900.002014-08-018August2014
23Small BusinessMexicoPaseoNone788.0...39400.002013-09-019September2013
65Small BusinessMexicoCarreteraLow494.0...23218.002013-10-0110October2013
89GovernmentCanadaVTTLow943.5...81612.752014-04-014April2014
92Small BusinessGermanyVTTLow986.0...46342.002014-09-019September2014
....................................
566GovernmentUnited States of AmericaAmarillaHigh270.0...12960.002014-02-012February2014
578GovernmentCanadaCarreteraHigh923.0...41073.502014-03-013March2014
581GovernmentUnited States of AmericaMontanaHigh982.5...43721.252014-01-011January2014
596GovernmentGermanyPaseoHigh357.0...15886.502014-11-0111November2014
643GovernmentCanadaPaseoHigh700.0...28700.002014-11-0111November2014
\n", "

53 rows × 16 columns

\n", "
" ], "text/plain": [ " Segment Country Product Discount Band \\\n", "12 Small Business Mexico Montana None \n", "23 Small Business Mexico Paseo None \n", "65 Small Business Mexico Carretera Low \n", "89 Government Canada VTT Low \n", "92 Small Business Germany VTT Low \n", ".. ... ... ... ... \n", "566 Government United States of America Amarilla High \n", "578 Government Canada Carretera High \n", "581 Government United States of America Montana High \n", "596 Government Germany Paseo High \n", "643 Government Canada Paseo High \n", "\n", " Units Sold ... Profit Date Month Number Month Name Year \n", "12 958.0 ... 47900.00 2014-08-01 8 August 2014 \n", "23 788.0 ... 39400.00 2013-09-01 9 September 2013 \n", "65 494.0 ... 23218.00 2013-10-01 10 October 2013 \n", "89 943.5 ... 81612.75 2014-04-01 4 April 2014 \n", "92 986.0 ... 46342.00 2014-09-01 9 September 2014 \n", ".. ... ... ... ... ... ... ... \n", "566 270.0 ... 12960.00 2014-02-01 2 February 2014 \n", "578 923.0 ... 41073.50 2014-03-01 3 March 2014 \n", "581 982.5 ... 43721.25 2014-01-01 1 January 2014 \n", "596 357.0 ... 15886.50 2014-11-01 11 November 2014 \n", "643 700.0 ... 28700.00 2014-11-01 11 November 2014 \n", "\n", "[53 rows x 16 columns]" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[(df['Units Sold'] < 1000) & (df['Profit'] > 10000)]" ] }, { "cell_type": "code", "execution_count": 35, "id": "6548c41e-7fb3-44fc-8ffb-f02a70f77b75", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SegmentCountryProductDiscount BandUnits Sold...ProfitDateMonth NumberMonth NameYear
12Small BusinessMexicoMontanaNone958.0...47900.002014-08-018August2014
23Small BusinessMexicoPaseoNone788.0...39400.002013-09-019September2013
65Small BusinessMexicoCarreteraLow494.0...23218.002013-10-0110October2013
89GovernmentCanadaVTTLow943.5...81612.752014-04-014April2014
92Small BusinessGermanyVTTLow986.0...46342.002014-09-019September2014
....................................
566GovernmentUnited States of AmericaAmarillaHigh270.0...12960.002014-02-012February2014
578GovernmentCanadaCarreteraHigh923.0...41073.502014-03-013March2014
581GovernmentUnited States of AmericaMontanaHigh982.5...43721.252014-01-011January2014
596GovernmentGermanyPaseoHigh357.0...15886.502014-11-0111November2014
643GovernmentCanadaPaseoHigh700.0...28700.002014-11-0111November2014
\n", "

53 rows × 16 columns

\n", "
" ], "text/plain": [ " Segment Country Product Discount Band \\\n", "12 Small Business Mexico Montana None \n", "23 Small Business Mexico Paseo None \n", "65 Small Business Mexico Carretera Low \n", "89 Government Canada VTT Low \n", "92 Small Business Germany VTT Low \n", ".. ... ... ... ... \n", "566 Government United States of America Amarilla High \n", "578 Government Canada Carretera High \n", "581 Government United States of America Montana High \n", "596 Government Germany Paseo High \n", "643 Government Canada Paseo High \n", "\n", " Units Sold ... Profit Date Month Number Month Name Year \n", "12 958.0 ... 47900.00 2014-08-01 8 August 2014 \n", "23 788.0 ... 39400.00 2013-09-01 9 September 2013 \n", "65 494.0 ... 23218.00 2013-10-01 10 October 2013 \n", "89 943.5 ... 81612.75 2014-04-01 4 April 2014 \n", "92 986.0 ... 46342.00 2014-09-01 9 September 2014 \n", ".. ... ... ... ... ... ... ... \n", "566 270.0 ... 12960.00 2014-02-01 2 February 2014 \n", "578 923.0 ... 41073.50 2014-03-01 3 March 2014 \n", "581 982.5 ... 43721.25 2014-01-01 1 January 2014 \n", "596 357.0 ... 15886.50 2014-11-01 11 November 2014 \n", "643 700.0 ... 28700.00 2014-11-01 11 November 2014 \n", "\n", "[53 rows x 16 columns]" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lowsold = df[df['Units Sold'] < 1000]\n", "lowsold[lowsold['Profit'] > 10000]" ] }, { "cell_type": "code", "execution_count": 36, "id": "889ec807-591b-41e6-9a40-780bb6b2f79b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[',Segment,Country,Product,Discount Band,Units Sold,Manufacturing Price,Sale Price,Gross Sales,Discounts,Sales,COGS,Profit,Date,Month Number,Month Name,Year\\n',\n", " '3,Midmarket,Germany,Carretera,None,888.0,3,15,13320.0,0.0,13320.0,8880.0,4440.0,2014-06-01,6,June,2014\\n',\n", " '6,Midmarket,Germany,Montana,None,921.0,5,15,13815.0,0.0,13815.0,9210.0,4605.0,2014-03-01,3,March,2014\\n',\n", " '12,Small Business,Mexico,Montana,None,958.0,5,300,287400.0,0.0,287400.0,239500.0,47900.0,2014-08-01,8,August,2014\\n',\n", " '14,Enterprise,Canada,Montana,None,345.0,5,125,43125.0,0.0,43125.0,41400.0,1725.0,2013-10-01,10,October,2013\\n']" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "file = os.path.join('files','lowsold.csv')\n", "lowsold.to_csv(file)\n", "open(file).readlines()[:5]" ] }, { "cell_type": "code", "execution_count": 37, "id": "19493d2b-426e-43f6-9001-6605a75a0ec5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['Segment,Country,Product,Discount Band,Units Sold,Manufacturing Price,Sale Price,Gross Sales,Discounts,Sales,COGS,Profit,Date,Month Number,Month Name,Year\\n',\n", " 'Midmarket,Germany,Carretera,None,888.0,3,15,13320.0,0.0,13320.0,8880.0,4440.0,2014-06-01,6,June,2014\\n',\n", " 'Midmarket,Germany,Montana,None,921.0,5,15,13815.0,0.0,13815.0,9210.0,4605.0,2014-03-01,3,March,2014\\n',\n", " 'Small Business,Mexico,Montana,None,958.0,5,300,287400.0,0.0,287400.0,239500.0,47900.0,2014-08-01,8,August,2014\\n',\n", " 'Enterprise,Canada,Montana,None,345.0,5,125,43125.0,0.0,43125.0,41400.0,1725.0,2013-10-01,10,October,2013\\n']" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "file = os.path.join('files','lowsold-noindex.csv')\n", "lowsold.to_csv(file,index=False)\n", "open(file).readlines()[:5]" ] }, { "cell_type": "code", "execution_count": 38, "id": "56211b13-a695-46b7-b5eb-15095e7d61a3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['Midmarket,Germany,Carretera,None,888.0,3,15,13320.0,0.0,13320.0,8880.0,4440.0,2014-06-01,6,June,2014\\n',\n", " 'Midmarket,Germany,Montana,None,921.0,5,15,13815.0,0.0,13815.0,9210.0,4605.0,2014-03-01,3,March,2014\\n',\n", " 'Small Business,Mexico,Montana,None,958.0,5,300,287400.0,0.0,287400.0,239500.0,47900.0,2014-08-01,8,August,2014\\n',\n", " 'Enterprise,Canada,Montana,None,345.0,5,125,43125.0,0.0,43125.0,41400.0,1725.0,2013-10-01,10,October,2013\\n',\n", " 'Midmarket,United States of America,Montana,None,615.0,5,15,9225.0,0.0,9225.0,6150.0,3075.0,2014-12-01,12,December,2014\\n']" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "file = os.path.join('files','lowsold-noindex.csv')\n", "lowsold.to_csv(file,index=False,header=False)\n", "open(file).readlines()[:5]" ] }, { "cell_type": "code", "execution_count": null, "id": "70f52a45-e4c1-4d1e-9ae8-e1ed435aa8af", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" } }, "nbformat": 4, "nbformat_minor": 5 }